• Title/Summary/Keyword: 온실가스 저감

Search Result 518, Processing Time 0.022 seconds

Measuring the Greenhouse Gas Emission Reduction and Management System Using Bluetooth Sensor Node (블루투스 센서노드를 이용한 온실가스 배출 저감 측정 및 관리시스템)

  • Lee, Seung-Jin;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1095-1100
    • /
    • 2013
  • Carbon dioxide is a major cause for which accelerates Global Warming. Therefore several countries are working on the project recommended to use a bicycle instead of the car when you move to the nearby destination in an effort to reduce the emissions of carbon dioxide. In this paper, It was developed to measure the greenhouse gas reduction using Bluetooth Sensor Node by riding a bicycle instead of a car and management system in order to authenticate the riding record. The developed application provides various information such as individual bicycle mileage, greenhouse gas reductions, bicycle riding path, the number of planted ginkgo trees. This proposed system is expected to be helpful to green house gas emission reduction because the usage rate of bicycle will increase if government combine ways to offer people rewards such as pin money or tax breaks for people who take advantage of the bicycle with the project.

Evaluation of CO2 Balance in the Barley-Red Pepper and Barley-Soybean Cropping System (보리-고추와 보리-콩 작부체계에서 이산화탄소수지 평가)

  • Kim, Gun-Yeob;Suh, Sang-Uk;Ko, Byung-Gu;Jeong, Hyun-Cheol;Roh, Kee-An;Shim, Kyo-Moon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.408-414
    • /
    • 2008
  • Importance of climate change and its impact on agriculture and environment has increased with the rise Green House Gases (GHGs) concentration in the atmosphere. To slow down the speed of climate change many efforts have been applied in industrial sectors to reduce GHGs emission and to enhance carbon storage. In agricultural sector, many researches have been performed on GHGs emission reduction, but few on the role of carbon sink. In this study, we investigated carbon balance and soil carbon storage in agricultural field in the barley-red pepper and barley-soybean cropping system. With the system for automatic measuring of carbon dioxide, net ecosystem production(NEP) was estimated to be $6.3ton\;CO_2\;ha-1$ for N-P-K chemical fertilizer treatment plot and $10.6ton\;CO_2\;ha^{-1}$ for N-P-K chemical fertilizer with swine manure treatment plot in the barley-soybean rotation cropping. In the barley-red pepper rotation cropping, it was $12.0ton\;CO_2\;ha^{-1}$ for N-P-K chemical fertilizer treatment plot and $13.2ton\;CO_2\;ha^{-1}$ for N-P-K chemical fertilizer with swine manure treatment plot. Soil carbon storage rate was estimated to be $0.7ton\;C\;ha^{-1}$ for the barley-soybean cropping system and $0.5ton\;C\;ha^{-1}$ for barley-pepper cropping system. In appeared that agricultural lands may contribute to the greenhouse effect as a potential carbon sink preserving carbon into soil.

A Study on the Calculation of $CO_2$ Emission and Road Freight Environmental Index for Logistics Companies (물류기업의 온실가스 배출량 및 도로화물환경지표 산정에 관한 연구)

  • Kim, Jong-Hyeon;Kim, Hong-Sang;Choe, Sang-Jin;Park, Seong-Gyu;Kim, Jeong;Jang, Yeong-Gi
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.25-35
    • /
    • 2011
  • In order to reduce Green House Gas(GHG) reduction in the road freight sector and thus establish green logistics, running efficiency of goods vehicles is of paramount importance. Providing effective transportation infrastructure can contribute to achieve the green logistics by reducing empty running of heavy goods vehicles and van, increasing the average payload on the vehicle, and shifting the transportation mode. In order to reduce the environmental impact from the road freight sector, it is essential to quantify the amount of environmental loading from the sector. However, any systematic survey on the environmental loading from the logistics companies has not been carried out in Korea. In this study, the environmental index for the road freight sector is defined as the amount of $CO_2$ emission per ton km generated from goods vehicles. The computational analysis shows that the average $CO_2$ emission per ton km generated by the logistics companies in Korea is $363g-CO_2/ton{\cdot}km$. Compared to UK (=$130g-CO_2/ton{\cdot}km$) and France (=$97g-CO_2/ton{\cdot}km$), the efficiency of logistics in Korea is 2.8 and 3.7 times as low as in the advanced countries. It also indicates that the main reasons for the low efficiency are mainly due to the high rate of empty operation of goods vehicles and the low payload.

An Environmental Evaluation of Copper and Aluminum Metal Resources Circulation by Life Cycle Assessment (LCA기법을 적용한 구리 및 알루미늄 금속자원 순환의 환경성 평가)

  • Shin, Woochul;Hwang, Yongwoo;Moon, Jinyoung;Kong, Chanhwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.139-146
    • /
    • 2014
  • In this research, we quantified the environmental load while using and not using secondary resources. During the process of primary processed product of metal resources (copper, aluminum), we applied LCA technique and analyzed by dividing into 8 environmental impact categories that affect the environment. Furthermore, we analyzed the greenhouse gas that occur during the process of primary processed product domestically and globally according to the changes of each metal resource's recycling rate. Consequently, when producing 1 ton of copper using secondary resources, the environmental effects were found to be 6.09E + 01 person-yr/f.u. and 7.23E + 01 person-yr/f.u. Additionally, as the recycling rate increased both globally and domestically, the amount of greenhouse gas decreased. Producing 1 ton of Aluminum using secondary resources, the environmental effects were found to be 2.34E + 02 person-yr/f.u. and 3.01E + 02 person-yr/f.u. Moreover, as the recycling rate domestically decreased, the amount of greenhouse gas increased, however the globally was decreased.

Efficiency Analysis of Greenhouse Gas Reduction according to Local Eco-friendly Housing Development Planned Element Using DEA Models (DEA모형을 이용한 지역별 친환경주택단지계획 요소에 따른 온실가스 감축 효율성 분석)

  • Hong, Ha-Yeon;Lee, Joo-Hyung
    • Land and Housing Review
    • /
    • v.4 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • This study which are recognized that the lack of empirical research about the efficiency of the elements of environmentally friendly housing development planned presented housing design elements and policies to revitalize for the reduction of greenhouse gas emissions by analyzing the effectiveness of reduction of greenhouse gas output. In addition, it used various models of DEA which are accepted until now effective technique to evaluate the performance of the organization. In conclusion, there are effective 5 regionals which are Seoul, Incheon, Ulsan, South Chungcheong Province, South Gyeongsang Province. other regionals was analyzed to be inefficient. The conclusion from this study are as follows: First, in case of 11 regionals which are analyzed to be inefficient, they have to difference plan elements to make up. So each region should establish strategy to complement vulnerability. Second, not only internal architectural factors but institutional, and external environmental factors also affect the reduction of greenhouse gas emissions. And weighted scores also were moderately high. But levels of weighted scores still less than the ratio of Good quality housing. So it can be determined that evaluation of individual architecture still considered important. It need to pay more attention to the operating system and the external environmental factors.

Development of CO2 Emission Factor for Wood Chip Fuel and Reduction Effects (목질계 바이오매스 중 대체연료 우드칩의 온실가스(CO2) 배출계수 개발 및 저감 효과)

  • Lee, Seul-Ki;Kim, Seung-Jin;Cho, Chang-Sang;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.3 no.3
    • /
    • pp.211-224
    • /
    • 2012
  • Technology for energy recovery from waste can reduce the greenhouse gas emissions. So recently, there are several companies using RDF, RPF, WCF instead of using only coal fuel and it's part of the fuel on the increase. In this study, we developed Wood chip fuel $CO_2$ emission factor through fuel analysis. It's moisture content is 23%, received net calorific value is 2,845 kcal/kg, and received basis carbon is 34%. The result of emission factor is $105ton\;CO_2/TJ$, it's 5.9% lower than 2006 IPCC guideline default factor $112ton\;CO_2/TJ$. The gross GHG(Greenhouse gases) emissions of plant A is $178,767ton\;CO_2 eq./yr$, and Net GHG emissions is $40,359ton\;CO_2 eq./yr$. Therefore, the reduction of GHG emissions is $138,408ton\;CO_2/yr$ through using WCF, and I accounts for 77% of all GHG emissions.

Material Flow Analysis and Impact of Greenhouse Gas Reduction by Glass Bottle Recycling (유리병 물질흐름 분석과 재활용에 따른 온실가스 감축 영향 분석)

  • SukWon Jung;Yong-Chul Jang
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.5
    • /
    • pp.204-213
    • /
    • 2024
  • Greenhouse gas (GHG) emissions are a major cause of global warming and climate change, and are currently emerging as serious environmental problems worldwide. Among them, glass bottles do not decompose naturally, and a lot of resources and energy are input into the production and processing processes, so recycling of glass bottles is important in terms of resource conservation, minimizing environmental pollution, and reducing GHG. Therefore, this study created a material flow diagram of glass bottles using related statistical data such as domestic glass bottle production and processing volume. In addition, the US EPA WARM model, Germany Prognos calculation method, and Denmark Christensen's calculation method were used to estimate the greenhouse gas reduction amount of glass bottles. As a result of the study, out of about 490,000 tons of waste glass bottles discharged as municipal waste, about 300,000 tons (61.2%) were recycled, and the rest were incinerated (22.1%) and landfilled (17.3%). As of 2022, it is estimated that approximately 73,399 tons CO2eq/yr will be reduced when applying the US EPA WARM model, approximately 52,847 tons CO2eq/yr when applying the Prgonos calculation method, and approximately 135,201 tons CO2eq/yr when applying the Christensen's calculation method. Further research is warranted that the methodology and GHG saving emission factors by reflecting glass recycling conditions and processes in Korea should be developed to reduce uncertainty of the results.

The Efficiency and General Equilibrium Effect by the Emission Trading Structure under the Climate Change Convention (기후변화협약 하의 배출권 거래 대상에 따른 일반균형효과와 효율성 비교)

  • Hur, Gahyeong;Cho, GyeongLyeob
    • Environmental and Resource Economics Review
    • /
    • v.15 no.2
    • /
    • pp.201-245
    • /
    • 2006
  • We applied general equilibrium model to analysis the economic impact of international emission trading by sector and the efficiency of the Convention to study whether Climate Change Convention satisfy the efficiency. We divided the world as 4 groups : USA, OECD members w/o USA (OEC), Former Soviet Union (FSU) and Developing countries (DEV). Compared to no trading, global trading would accomplish the same environmental effect with less cost as much as 97.8 billion$, which is the surplus of trading. However, half of it is taken by USA and 20% by OEC. FSU and DEV have only 18% and 10%. This result suggest the two things. First, the emission trading is effective as far as the participation of developing countries are guaranteed. If they do not take part in the coalition and emit the leakage, it may threaten the stability of the international trading coalition. Second, we found the logical ground of the side payment for developing countries. The permit buying countries take more share of the surplus under the emission trading, while the energy sector of developing countries shrinks to sell permits, which may adversely affect to economic growth of the countries. Therefore, the Annex-I countries need to provide side payment to lead the participation of the developing countries.

  • PDF

Pyrolysis Effect of Nitrous Oxide Depending on Reaction Temperature and Residence Time (반응온도 및 체류시간에 따른 아산화질소 열분해 효과)

  • Park, Juwon;Lee, Taehwa;Park, Dae Geun;Kim, Seung Gon;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1074-1081
    • /
    • 2021
  • Nitrous oxide (N2O) is one of the six major greenhouse gases and is known to produce a greenhouse ef ect by absorbing infrared radiation in the atmosphere. In particular, its global warming potential (GWP) is 310 times higher than that of CO2, making N2O a global concern. Accordingly, strong environmental regulations are being proposed. N2O reduction technology can be classified into concentration recovery, catalytic decomposition, and pyrolysis according to physical methods. This study intends to provide information on temperature conditions and reaction time required to reduce nitrogen oxides with cost. The high-temperature ranges selected for pyrolysis conditions were calculated at intervals of 100 K from 1073 K to 1373 K. Under temperatures of 1073 K and 1173 K, the N2O reduction rate and nitrogen monoxide concentration were observed to be proportional to the residence time, and for 1273 K, the N2O reduction rate decreased due to generation of the reverse reaction as the residence time increased. Particularly for 1373 K, the positive and reverse reactions for all residence times reached chemical equilibrium, resulting in a rather reduced reaction progression to N2O reduction.

An Experimental Study on GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Aerodynamics Device Package (공기저항 저감장치 패키지를 이용한 대형화물차량의 연비개선 및 온실가스 저감효과에 관한 실험적 연구)

  • Park, Seungwon;Dong, Lang;Her, Chulhaeng;Yun, Byoeunggyu;Kim, Daewook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.207-218
    • /
    • 2017
  • Improving fuel consumption, particularly that of commercial vehicles, has become a global concern. The reduction in logistics cost has been a key issue in efforts to improve fuel economy and efficiency of transportation equipment. Typical technologies for reducing reduce fuel usage include air resistance reduction technologies, tire rolling resistance technologies, and idle technologies among others. Air resistance technology is a highly effective method that can be easily applied in a short period. As with air resistance technology, several devices involving side skirt, boat tail and gap fairing have been developed based on an analytical 3-D modeling technique for reducing air resistance attributed to the vehicle configuration. The devices were on a 45 feet tractor-trailer and the emission test was done using PEMS equipment. Fuel economy was evaluated by introducing several devices to reduce outer air resistance. The test was conducted by changing the experimental method of SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test. As a result, air resistance decreased by at least 15 % and fuel economy improved by at least 13 %. This study sought to reduce greenhouse gas and improve fuel economy by applying several devices to a test vehicle to lower air resistance.