• Title/Summary/Keyword: 온실가스저감

Search Result 514, Processing Time 0.025 seconds

Measurements of $CH_4$ Flux from Landfill Surface and Theoretical Estimation in Its Emission (매립지 표면으로부터의 $CH_4$ 배출량 측정과 이론적 장래배출량 예측)

  • 김득수;오진만;고현석;두강진;장영기;전의찬
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.200-202
    • /
    • 2000
  • 온실가스의 배출자료는 기후변화협약 참여협상 및 저감대책 수립에 없어서는 안될 중요한 기초자료이다. 그러나 국내에서는 현재 에너지와 농업 분야를 제외하고는 온실가스의 배출원 및 배출량 조사가 미미한 실정이다. 이번 연구에서는 기후변화와 관련된 온실효과에 커다란 기여를 하고 있는 메탄($CH_4$)의 매립지 표면으로부터의 국내 배출량을 조사하고자 한다. $CO_2$, $CH_4$, $N_{2}O$, $O_3$, CFC 등의 주요 온실가스들은 여러 경로를 통해서 대기로 배출되고 있으며, 온실가스의 배출기여도를 보면 도시쓰레기의 매립이 전체 배출량에 약 3%정도 기여하는 것으로 보고되었다. (중략)

  • PDF

The Effects of Energy Price Increase on Automobile Industry (에너지가격 상승이 자동차산업에 미치는 영향)

  • Kim, Younduk;Han, Hyun-Ok
    • Journal of Environmental Policy
    • /
    • v.11 no.3
    • /
    • pp.97-122
    • /
    • 2012
  • This article analyzes the effects of energy price increase induced by GHGs mitigation policy on automobile industry empirically. An increase in energy price due to GHGs mitigation policy does not have a significant effect on the production and the value-added in automobile industry. Electricity price has a negative effect on the production and the value-added in automobile industry, but it is not significant. However, employment is significantly affected by a change in electricity price. Export is also affected negatively, but the effect is insignificant. These results imply that GHGs mitigation policy such as carbon tax might affect adversely the employment in automobile industry. Especially, their effects on employment are significant. Therefore, some moderating measures to relieve the adverse effects on employment in automobile industry should be called upon with the implementation of GHGs mitigation policy.

  • PDF

Evaluation of Greenhouse Gas Emissions for Life Cycle of Mixed Construction Waste Treatment Routes (혼합 건설폐기물 처리경로별 전과정 온실가스 발생량 평가)

  • Kim, Da-Yeon;Hwang, Yong-Woo;Kang, Hong-Yoon;Moon, Jin-Young
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.56-64
    • /
    • 2022
  • Construction waste is generated at a rate of approximately 221,102 tons/day in Korea. In particular, mixed construction waste generates approximately 24,582 tons/day. The other components were recycled by 98.9%. The amount of greenhouse gas emissions from the waste was 17.1 million tons of CO2 equaling 2.3% of the total greenhouse gas emissions. To reduce greenhouse gas emissions, reducing the environmental impact is becoming increasingly important. However, appropriate treatment must first be established, as mixed construction waste is also increasing. Thus, an effective plan is urgently needed because it is frequently segregated and sorted by the landfill and incinerated. In addition, there is an urgent need to prepare various effective recycling methods rather than a simple treatment. Therefore, this study analyzed the environmental impact of the treatment of mixed construction waste by calculating greenhouse gas emissions. As a result, the highest greenhouse gas generation occurred during the incineration stage. Moreover, the optimal method to reduce greenhouse gas emissions is recycling and energy recovery from waste. In addition, the amount of greenhouse gas generated during energy recovery from the waste stage was the second highest. However, greenhouse gas emissions can be reduced by using waste as energy to reduce fossil fuel consumption. In addition, for the transportation stage, the optimal reduction plan is to minimize the amount of greenhouse gas emissions by setting the optimal distance and applying biofuel and electric vehicle operations.

Greenhouse Gas Mitigation Policies and National Emission Targets of Korea (온실가스 감축을 위한 정책과 우리나라의 부문별 감축여건)

  • Kim, Ho-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.809-817
    • /
    • 2010
  • Reducing emissions across all sectors requires a well-designed policies tailored to fit specific national circumstances. And every climate policymaker would like to have an accurate method of assessing the quantitative impacts of future policies to address GHG-related problems. Estimates of future changes in a nation's GHG emissions, the expected environmental impacts of future energy sector developments, and the potential costs and benefits of different climate technology and mitigation policy options are desirable inputs to policy making. Various mitigation analysis and modeling approaches helped to fill the needs for these kinds of information, and as such has been an important part of national mitigation policy making in many countries for most of two decades. This paper provides a overview of GHG mitigation policies and mitigation analysis, and sectoral mitigation circumstances and potentials.