• Title/Summary/Keyword: 온습도 센서

Search Result 80, Processing Time 0.026 seconds

Development of atmospheric environment information collection system using drone (드론을 이용한 대기환경정보 수집장치 개발 및 응용 연구)

  • Kim, Nam Ho
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.44-51
    • /
    • 2018
  • The purpose of this research is to collect atmospheric environmental information at specific altitudes in a range of 0 to 1 km above the surface and to monitor it using drones. The corresponding temperature and humidity were measured with the meteorological factors, and the amounts of fine dust and $CO_2$ were observed by the environmental factors so that they could receive the normal values. Monitoring the status of atmospheric gas emission in specific enterprises, industrial complexes and regions through the measurement is meant to help establish policies to reduce pollution factors. In conventional means previously practiced, exhaust gas detection accompanies a great deal of risks in terms of safety because the surveyor is directly exposed to the source of contamination such as the holes installed in the chimney. However, in our proposed method, the drone can collect information in a wide range under safe circumstances, which can be utilized through wide industrial areas.

Design of Emergency Notification Smart Farm Service Model based on Data Service for Facility Cultivation Farms Management (시설 재배 농가 관리를 위한 데이터 서비스 기반의 비상 알림 스마트팜 서비스 모델 설계)

  • Bang, Chan-woo;Lee, Byong-kwon
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Since 2015, the government has been making efforts to distribute Korean smart farms. However, the supply is limited to large-scale facility vegetable farms due to the limitations of technology and current cultivation research data. In addition, the efficiency and reliability compared to the introduction cost are low due to the simple application of IT technology that does not consider the crop growth and cultivation environment. Therefore, in this paper, data analysis services was performed based on public and external data. To this end, a data-based target smart farm system was designed that is suitable for the situation of farms growing in facilities. To this end, a farm risk information notification service was developed. In addition, light environment maps were provided for proper fertilization. Finally, a disease prediction model for each cultivation crop was designed using temperature and humidity information of facility farms. Through this, it was possible to implement a smart farm data service by linking and utilizing existing smart farm sensor data. In addition, economic efficiency and data reliability can be secured for data utilization.

Hospital Room Environment Monitoring System based on Wireless Communication (무선통신에 기반한 병실 환경 모니터링 시스템)

  • Lee, Seung-Chul;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.28-30
    • /
    • 2022
  • Recently, the number of confirmed cases has increased again with the new variant of COVID-19. Quarantine is recommended, especially to prevent the rapidly increasing spread, as environmental controls, such as minimizing contact with others, can increase safety. In addition, there are often cases in which the patient's condition cannot be confirmed from the standpoint of a guardian, such as visitation being prohibited under certain conditions. At this time, the sensor data values of oxygen, carbon dioxide concentrations, temperature and humidity, and alcohol, which are medical gases used in hospitals, are collected remotely using ZigBee wireless communication technology. Design a system that can be stored and monitored in a database. We propose an environmental monitoring system, which is a visualization system designed to allow hospitals to check and feedback data on the managed environment, and to give reliability to parents.

  • PDF

식품공급망 안전관리시스템 설계 및 구현

  • Im, Dong-Seok
    • Food preservation and processing industry
    • /
    • v.16 no.2
    • /
    • pp.10-23
    • /
    • 2017
  • 최근 햄버거 병을 시작으로 살충제 계란파동, E형간염 소시지까지, 급증한 식품안전 사고는 국민식품소비를 위축시키고 막연한 공포감 조성으로 올바른 식품섭취를 유지할 수 없도록 한다. 국민소득 증가와 더불어 식품의 안전성에 대한 소비자의 관심이 높아지고 있으며, 소비자는 보다 안전한 먹거리를 공급해줄 것을 요구하고 있다. 이에 대한 대응책을 마련하고자 정부와 식품업계, 학계 등은 고심하고 있다. 본 연구는 4차산업혁명에 발맞추어 식품안전분야에 ICT기술을 활용한 생산에서 소비자까지의 식품공급망의 안전관리를 체계화하는 FSMS(Food Safety Management System)을 구성해보고 그를 통한 식품의 안전도를 시험분석을 통해 효과를 검증하는 것이 목적이다. 본 연구는 FSMS의 기술요소인 빅데이터, 온습도IoT센서 등을 Pilot Test하고 FSMS 도입전과 도입후의 검체를 체품하여 공인식품시험검사기관에서 검체의 미생물수 분석을 통해 최종적으로 FSMS의 도입효과와 모형도를 제시하였다.

  • PDF

Implementation of Greenhouse Environmental Control Systems using Intelligence (지능을 이용한 온실 제어 시스템)

  • Yang, J.;Chung, C.D.;Hong, You-Sik;Ahn, B.I;Hwang, S.I.;Choi, Y.H.
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.29-37
    • /
    • 2012
  • An experiment for an optimized automatic greenhouse environment in a flower farming greenhouse by building a ubiquitous sensor network with various sensors was conducted and the results were evaluated. And various culturing environmental information and data in the greenhouse were collected and analyzed. Then, the greenhouse was designed to maintain the best culturing environment on the basis of existing recommended optimized figures. By measuring the growth of the crops in the greenhouse, A system which controls facilities in the greenhouse to maintain the best culturing environment in accordance with change in the environment was analyzed.Computer simulation result proced that we discovered that controlling the facilities and the artificial light source increased production, enhanced quality, reduced labor and heating cost immensely. The experiment has proved that the u-flower farming system can maximize the income of farm families by sending warning messages to users of this system when weather suddenly changes so that users may cope with such changes and maintain the best culturing environment.

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

Development of Facility Management System for Indoor Space Based on ICBM Technology (ICBM기반 실내 공간 유지관리 시스템 개발)

  • Jung, Yoo-Seok;Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.49-55
    • /
    • 2019
  • An open office or a shared office is emerging as the emphasis on the collaborative and communicative work environments is increasing. In the past, the user maintained the space, but the maintenance of indoor space became difficult because there is no fixed user. Indoor space information can be collected using the ICBM framework system. The facility management can achieve this with data. Therefore, this study proposed a framework based on ICBM (Internet of Things, Cloud, Big Data, and Mobile) for verifying the possibility of a smart facility management system for indoor space. IoT (Internet of Things) technology was used to measure the indoor temperature, humidity, occupancy, and brightness continuously, and provided the data to Web API via WiFi. Data acquired automatically via IoT, existing maintenance data, and spatial information were integrated through the Cloud. Big data collected by sensors were processed as meaningful spatial information for maintenance. Indoor space information and maintenance information can be delivered to the manager through the mobile. Based on the collected data, room occupancy recognition is limited due to a range of ultrasonic wave sensors. On the other hand, brightness represents the space conditions. The difference between lighting on/off, weekday and weekend can be shown. The temperature data and the relative humidity data were collected steadily to evaluate the comfort.

Development of IoT-based Can Compactor/PET Bottle Crusher Management System (IoT 기반의 캔/PET병 압착파쇄기 관리시스템 개발)

  • Dae-Hyun Ryu;Ye-Seong Kang;Tae-Wan Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1239-1244
    • /
    • 2023
  • In this study, we developed an IoT-based management system to manage a can/PET crusher. Various sensors such as two load cells, DHT22 temperature and humidity sensor, and fine dust meter were interfaced with ESP32 to construct an IoT device, and a management server was built using Node-RED. The system monitors the weight of pressed cans and shredded PET bottles in real time and sends a text message to the manager when the weight exceeds the predetermined threshold for timely collection. The results of the operational test confirmed that the system provides accurate monitoring and efficient notification functions, and offers the possibility of solving environmental problems by improving the efficiency of waste management such as cans and PET bottles.

Spatiotemporal Changes of Temperature and Humidity in Lentinula edodes Cultivation Sheds (표고시설재배사내 시·공간적인 온·습도변화)

  • Ryu, Sung Ryul;Koo, Chang Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.468-475
    • /
    • 2005
  • To understand spatiotemporal changes of temperature and humidity in Lentimula edodes cultivation sheds, temperature, relative humidity were measured with HOBO H8 series sensors in log cultivation sheds and sawdust cultivation sheds. The results obtained from October in 2003 to October in 2004 were as follows; 1. Horizontal temperature changes were smaller at center of cultivation shed inside than comer of cultivation shed inside, while relative humidity changes were greater about 3% at center of cultivation shed inside than corner of cultivation shed inside. 2. Vertical temperature changes showed that the temperature was higher at above than at below when the temperature rises, while the temperature was lower at above than at below when the temperature falls. Thus close to soil surface temperature showed a little fluctuation. Vertical relative humidity changes showed that the relative humidity was lower at above than at below when the temperature rises, while the relative humidity was higher at above than at below when the temperature falls. After all temperature and relative humidity was the opposite in cultivation shed. 3. It's showed in log cultivation shed that the minimum temperature was a subzero temperature until the end of April, while the minimum temperature did above zero after the beginning of the May. Besides a winter was the greatest at daily temperature range during the four season, about $30^{\circ}C$. On the other hand the minimum relative humidity was less than 20% at April, May and June but more than 40% after May.

Development of a Moving Monitor System for Growing Crops and Environmental Information in Green House (시설하우스 이동형 환경 및 생장 모니터링 시스템 개발)

  • Kim, Ho-Joon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • In rural area, our farmers confront decreasing benefits owing to imported crops and increased cost. Recently, the government encourage the 6th Industry that merges farming, rural resources, and information and communication technology. Therefor the government makes an investment in supplying 'smart greenhouse' in which a farmer monitor growing crops and environment information to control growing condition. The objective of this study is developing an Moving Monitor and Control System for crops in green House. This system includes a movable sensing unit, a controlling unit, and a server PC unit. The movable sensing unit contains high resolution IP camera, temperature and humidity sensor and WiFi repeater. It rolls on a rail hanging beneath the ceiling of a green house. The controlling unit contains embedded PC, PLC module, WiFi router, and BLDC motor to drive the movable sensing unit. And the server PC unit contains a integrated farm management software and home pages and databases in which the images of crops and environment informations. The movable sensing unit moves widely in a green house and gathers lots of information. The server saves these informations and provides them to customers with the direct commercing web page. This system will help farmers to control house environment and sales their crops in online market. Eventually It will be helpful for farmers to increase their benefits.