• Title/Summary/Keyword: 온배수

Search Result 243, Processing Time 0.024 seconds

A Study on the Discharge System of Thermal Waste Water (온배수 방류시스템에 관한 기초적 연구)

  • Kwak, Ki-Su;Jeon, Yong-Ho;Kim, Heon-Tae;Ryu, Cheong-Ro;Lee, Kyung-Seon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.87-94
    • /
    • 2007
  • This study used POM (Princeton ocean model) improved for applying to coastal area in order to predict the distribution of thermal waste water. This model was applied to the coastal circulation and the effect of thermal waste water of Cheonsu-Bay. So this study compared the discharge of thermal waste water with each layer and section. The tidal current was about 1.5 m/sec at surface level and 0.9 m/sec on bottom level at flood tide; tidal current was about 1.3 m/sec on surface level and 0.8 m/sec on bottom level at ebb tide. The method discharging the thermal waste water in the nearshore region (case 1) accelerates the diffusion of the thermal waste water in the north-south direction(longshore direction). However, the method discharge the thermal waster water in the offshore region (case 2) reduced the diffusion of the thermal waste water over the coastal region. According th the diffusion region of the thermal waste water with case 1 and case 2 at three different layers (surface, middle, bottom), the diffusion region by case 1 discharge method generally influenced wider region (twice) than the one by case 2 discharge method with lower temperature between $1^{\circ}C\;and\;2^{\circ}C$, whereas the case 2 discharge method influenced the deeper region (middle and botton layers) with higher change of the water temperature ($1{\sim}3^{\circ}C$).

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Development of Simulation Model for Diffusion of Oil Spill in the Ocean 1 -Three Dimensional Characteristics of the Circulation in the Nearly Closed Bay- (해양유출기름의 확산 시뮬레이션 모델 개발I- 폐쇄만에서의 3차원 흐름특성분석 -)

  • Lee, J.W.;Kim, K.C.;Kang, S.Y.;Doh, D.H.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.241-255
    • /
    • 1997
  • Three dimensional numerical model is used to simulate the circulation patterns in the Gamcheon Bay located in Pusan, Korea and compared with the observed data. The model is forced by winds, tidal elevation at open boundaries, and warm water discharged from the outfall of power plant, Turbulence mixing coefficients are calculated according to a ${\kippa}-{\varepsilon}$ turbulence closure submodel. Temperature, salinty and current are measuted extensively and these measuted data are compared with the simulation results. Eddy-like features exist both in observed data dna simulation results. These eddies are the results of interaction with the weak tidal current, wind driven current and warm water discharges. Compensational deeects are also found to exit such that while surface current is strong, bottom current tends to weaken and vice versa.

  • PDF

Feasibility of Artificial Neural Network Model Application for Evaluation of Undrained Shear Strength from Piezocone Measurements (피에조콘을 이용한 점토의 비배수전단강도 추정에의 인공신경망 이론 적용)

  • 김영상
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.287-298
    • /
    • 2003
  • The feasibility of using neural networks to model the complex relationship between piezocone measurements and the undrained shear strength of clays has been investigated. A three layered back propagation neural network model was developed based on actual undrained shear strengths, which were obtained from the isotrpoically and anisotrpoically consolidated triaxial compression test(CIUC and CAUC), and piezocone measurements compiled from various locations around the world. It was validated by comparing model predictions with measured values about new piezocone data, which were not previously employed during development of model. Performance of the neural network model was compared with conventional empirical method, direct correlation method, and theoretical method. It was found that the neural network model is not only capable of inferring a complex relationship between piezocone measurements and the undrained shear strength of clays but also gives a more precise and reliable undrained shear strength than theoretical and empirical approaches. Furthermore, neural network model has a possibility to be a generalized relationship between piezocone measurements and undrained shear strength over the various places and countries, while the present empirical correlations present the site specific relationship.

A Mode Shape Comparison of Viscoelastic Composite Material on Temperature Change (점탄성 복합재의 온도 변화에 따른 모드 형상 비교)

  • Min, Cheon-Hong;Shon, Jae-Geun;Park, Han-Il;Bae, Su-Ryong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.150-153
    • /
    • 2006
  • 점탄성 복합재는 간단한 작업으로 큰 감쇠 효과를 볼 수 있어 사용이 날로 늘어나고 있다. 그런데 점탄성 복합재의 특성은 온도에 민감하게 반응하며 변화한다. 그러므로 점탄성 복합재의 모드해석 시 온도 변화에 따른 해석이 필요하다. 본 논문에서는 한쪽면에 점탄성재를 부착한 Oberst beam을 일단고정 상태로 설치하여 실험 온도를 $-15{\sim}45^{\circ}C$로 변화시켜가며 전달함수를 이용하여 실험모드해석을 실행하였다. 그리고 온도 차이에 따른 모드형상을 비교하였다.

  • PDF

저수온과 고수온 조건에서 수온급변 스트레스에 대한 넙치(Paralichthys olivaceus)의 생리적 반응

  • Heo, Jun-Wook;Jang, Young-Jin;Jin, Pyung;Im, Han-Kyu
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.261-262
    • /
    • 2001
  • 어류는 수온에 의해 성장, 번식, 대사, 삼투압 조절 및 면역 등 생명활동에 영향을 받는다(Wendelaar Bonga, 1997). 여름철 우리나라 동해안에서 발생하는 냉수대로 인한 급격한 수온변화는 어류의 느린 성장과 질병 발생을 초래하는요인이 되는 것으로 알려져있다. 또한 발전소 인근수역은 고수온기인 여름철에 온배수의 영향을 받아 수온이 더욱 상승하게 된다. 수온의 급변이 어체의 생리적 변화를 야기시키고 스트레스요인으로 작용하여, 생체내 대사와 혈액성상의 변화를 일으키는 것으로 연구된 바 있다(Barton and Iwama, 1991). (중략)

  • PDF

Ecological Characteristics of Periphyton Community in a Small Mountain Stream (Buso) Inflowing Thermal Wastewater Effluent, Korea (온배수가 유입되는 계류 (부소천)에서 부착조류의 생태학적 특성)

  • Jeon, Gyeonghye;Kim, Nan-Young;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.216-237
    • /
    • 2017
  • Thermal effluent of the hot spring has long been a field of interest in the relationship between temperature gradient and freshwater algae in geology, limnology and aquatic ecology throughout the world. On the other hand, many artificial hot springs have been developed in Korea, but the research on them has not been still active. This study was performed every month from December 2015 to September 2016, to elucidate the spatiotemporal effects of thermal wastewater effluent (TWE) on the ecosystem of benthic algal assemblage in four stations(BSU (upstream), HSW (hot spring wastewater outlet), BSD1~2 (downstream)) of the upstream reach of the Buso Stream, a tributary located in the Hantan River basin. During the survey, the influencing distance of temperature on TWE was <1.0 km, and it was the main source of N P nutrients at the same time. The effects of TWE were dominant at low temperature and dry season (December~March), but it was weak at high temperature and wet season (July~September), reflecting some seasonal characteristics. Under these circumstances, the attached algal communities were identified to 59 genera and 143 species. Of these, the major phylum included 21 genera 83 species of diatoms(58.0%), 9 genera 21 species of blue-green algae (14.7%) and 25 genera 32 species of green algae (22.4%), respectively. The spatiotemporal distribution of them was closely related to water temperature ($5^{\circ}C$ and $15^{\circ}C$) and current ($0.2m\;s^{-1}$ and $0.8m\;s^{-1}$). In the basic environment maintaining a high water temperature throughout the year round, the flora favoring high affinity to $PO_4$ in the water body or preferring stream habitat of abundant $NO_3-PO_4$ was dominant. As a result, when compared with the outcomes of previous algal ecology studies conducted in Korea, the Buso Stream was evaluated as a serious polluted state due to persistent excess nutrient supply and high thermal pollution throughout the year round by TWE. It can be regarded as a dynamic ecosystem in which homogeneity (Summer~Autumn) and heterogeneity (Winter~Spring) are repeated between upstream and downstream.