• 제목/요약/키워드: 온라인 추천 서비스

검색결과 136건 처리시간 0.022초

온라인 쇼핑의 데이터 융합 기반 사이즈 추천 서비스: 서비스 품질, 정보 신뢰, 고객 만족의 구매 의도에 대한 역할 (Size Recommendation Technology Convergence in e-Shopping: Roles of Service Quality Information Credibility and Satisfaction on Purchase Intention)

  • 김지은
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.7-17
    • /
    • 2021
  • 본 연구는 온라인 패션 리테일링에서 최근 이용이 증가하고 있는 데이터 융합 기반 사이즈 추천 테크놀로지 서비스 품질이 정보 신뢰와 만족 및 구매 의도에 미치는 영향을 검증하였다. 연구를 위한 설문은 아마존 미케니컬 터크에서 시행되었으며, 사이즈 추천 테크놀로지의 사용 경험이 없는 18세 이상 60세 이하의 미국 거주 여성을 대상으로 하였다. 이들은 설문에 제시된 링크를 클릭하여 특정 패션 온라인 리테일러의 웹페이지에서 사이즈 추천 테크놀로지를 경험한 뒤, 설문에 답하였다. 불성실한 응답을 제외한 213부를 SPSS 27.0과 Process Macro(모델 6번, 5,000 bootstrapping sample)를 이용하여 분석한 결과, 사이즈 추천 테크놀로지 서비스 품질의 하위차원은 반응성과 사용 편의성으로 나타났으며, 두 하위차원은 모두 정보 신뢰와 만족을 매개로 하여 구매 의도에 영향을 미치고 있는 것으로 나타났다. 본 연구는 이와 같은 결과를 바탕으로 사이즈 추천 테크놀로지의 상용화를 위한 전략을 제언하였다.

암묵적 피드백 기반 반려동물 용품 추천 시스템 (Pet Shop Recommendation System based on Implicit Feedback)

  • 최희열;강윤희;강명주
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1561-1566
    • /
    • 2017
  • 기계 학습과 인공 지능 기술의 발전으로 다양한 응용분야들이 가능해지고 있고, 이중에 추천 시스템은 이미 여러 업체들에서 영화 추천이나 상품 추천 등의 서비스에 적용하여 효과를 보고 있다. 이러한 서비스 중인 추천 시스템들의 대부분은 아이템의 내용을 분석하여 추천하거나 아니면 평점과 같은 직접적인 피드백에 기반하여 시스템을 학습하고 추천하고 있다. 하지만 많은 온라인 쇼핑몰 중에는 아이템의 내용을 분석하는 것이 어렵고, 직접적인 피드백 정보가 없거나 혹은 거의 없어 추천 시스템 구축이 어려운 경우가 많다. 이러한 경우에도 사용자의 상품 조회에 관한 로그 기록들은 어렵지 않게 확보할 수 있고, 로그 기록들만 가지고도 추천 서비스를 제공할 수 있다면 서비스의 질을 향상할 수 있을 것으로 기대된다. 본 논문에서는 사용자의 로그 기록으로부터 암묵적인 피드백인 상품 조회 정보를 추출하고, 암묵적인 피드백에 기반한 추천 시스템을 구현하고, 제안된 시스템은 온라인 반려동물 용품점에 적용하여 확인한다. 즉, 사용자들의 상품조회를 위한 클릭정보만을 활용하여 반려동물 용품 추천 시스템을 구축하여 서비스로 확인한다.

희박한 고객 활동 데이터에서 최신성 기반 추천 성능 향상 연구

  • 백상훈;김주영;안순홍
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.781-784
    • /
    • 2019
  • 최근 AI를 산업 서비스에 적용하기 위해 많은 회사들이 활발히 연구를 하고 있다. 아마존과 넷플릭스 같은 거대 기업들은 이미 빅데이터와 AI 머신러닝을 이용한 추천 시스템을 구현하였고 아마존은 매출의 35%가 추천에 의해 발생하고 넷플릭스 75%의 사용자가 추천을 통해 영화를 선택한다고 보고되었다. 이러한 두 기업의 높은 추천 효율성의 이유는 협업 필터링(Collaborative filtering)과 같은 다양한 추천 알고리즘과 방대한 상품 및 고객 행동(구매, 시청 등) 데이터 등이 존재하고 있기 때문이다. 기계학습에서 알고리즘 학습을 위한 데이터의 양이 많지 않을 경우 알고리즘의 성능을 보장할 수 없다는 것이 일반적인 의견이다. 방대한 데이터를 가진 기업에서 추천 알고리즘을 적극적으로 활용 및 연구하고 있는 것도 이러한 이유 때문이다. 반면, 오프라인 및 여행사 기반에서 온라인 기반으로 영역을 차츰 확대하고 있는 항공 서비스 고객 데이터의 경우, 산업의 특성상 많은 회원에 비해 고객 1명당 온라인에서 활동하는 이력이 많지 않은 것이 특징이다. 이는, 추천 알고리즘을 통한 서비스 제공에서 큰 제약사항으로 작용한다. 본 연구에서는, 이러한 희박한 고객 활동 데이터에서 최신성 기반의 추천 시스템을 통하여 제약사항을 극복하고 추천 효율을 높이는 방법을 제안한다. 고객의 최근 접속 이력 로그를 시간 기준으로 데이터 셋을 분할하여 추천 알고리즘에 반영하였을 때, 추천된 노선에 대한 고객의 반응을 추천 성능 지표인 CTR(Click-Through Rate)로 측정하여 성능을 확인해 보았다.

소셜커머스와 온라인 쇼핑몰의 수용의도와 추천의도에 영향을 미치는 요인 (Factors Affecting on Users' Intention in using Social Commerce and Online Shopping)

  • 손증군
    • 한국콘텐츠학회논문지
    • /
    • 제14권3호
    • /
    • pp.352-360
    • /
    • 2014
  • 본 연구는 소셜커머스와 온라인 쇼핑몰에 대한 소비자의 수용의도와 추천의도가 어떤 요인에 의해 영향을 받는지 살펴보고자 한다. 전자상거래 및 소셜커머스 분야의 선행연구를 토대로, 지각된 유용성, 지각된 용이성, 지각된 서비스품질, 지각된 위험 등의 4가지 요인을 외생변수로 도출하여 수용의도와 추천의도를 종속변수로 선정하고 연구목적을 달성하기 위하여 연구모형과 가설을 설정하였다. 연구결과를 요약하면 다음과 같다. 첫째, 지각된 유용성과 지각된 서비스품질은 소셜커머스와 온라인 쇼핑몰에서 모두 수용의도와 추천의도에 정(+)의 영향을 미치는 것으로 확인되었다. 둘째, 지각된 위험은 소셜커머스와 온라인 쇼핑몰에서 모두 수용의도와 추천의도에 부(-)의 영향을 미치는 것으로 검증되었다. 셋째, 지각된 용이성은 온라인 쇼핑몰에서 수용의도에 영향을 미치지 않은 것으로 나타나는 반면에 소셜커머스에서 수용의도에 정(+)의 영향을 미치는 것으로 확인되었다. 본 연구결과를 토대로 소셜커머스 분야의 실무운영자들에게 소셜커머스 운영에 필요한 다양한 시사점을 제시하였다.

테스트 및 맞춤형 상품 추천 서비스 제공 쇼핑몰 웹 사이트 개발 (Provide Test and Customized Product Recommendation Service Development of Shopping Mall Web Site)

  • 유승재;임도영;전소현;황예하;최재홍;주용완;이준동
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.705-708
    • /
    • 2023
  • 본 논문은 사용자의 피부 상태에 따라 사용자에게 적합한 화장품을 소개해주는 화장품 추천 웹 쇼핑몰, "PBTI"를 개발한다. 요즘 유행하는 성격 유형 설문조사인 MBTI에서 영감을 받아 피부 유형과 퍼스널 컬러를 검사하고 이를 기반으로 화장품을 추천하는 온라인 쇼핑몰 웹사이트를 제작하게 되었다. 바우만 교수의 피부 유형 지표를 바탕으로 제작된 질문을 통해 사용자들의 피부 유형을 검사하고 해당 피부 유형 결과에 따른 상품을 추천해주는 알고리즘이 탑재되어 사용자에게 맞는 상품을 추천해준다. 텐서플로우 기반의 인공지능을 탑재하여 퍼스널컬러 테스트를 제작하였다. PBTI의 이러한 무료 테스트 서비스 제공은 다른 온라인 뷰티 쇼핑몰과 극명한 차별점을 만들고, 쇼핑몰 매출을 크게 증대시킬 것으로 기대한다.

  • PDF

국내 공공도서관 온라인 북큐레이션 서비스의 내용분석 (Content Analysis of Online Book Curation Services in Korean Public Libraries)

  • 이수상;이태석;주소현
    • 한국도서관정보학회지
    • /
    • 제53권4호
    • /
    • pp.189-209
    • /
    • 2022
  • 본 연구는 국내 공공도서관에서 제공하고 있는 온라인 북큐레이션 서비스와 해당 서비스에서 추천된 도서를 내용분석하여 그 특성을 파악하는 것이 목적이다. 분석대상은 23개 공공도서관에서 수집한 35가지 온라인 북큐레이션 서비스와 11,447권의 추천도서 목록이며, 연구의 결과는 다음과 같다. 일부 도서관들만 추천주제를 제시하고 있었고, 추천대상은 특정한 대상을 지정하지 않은 경우가 가장 많았으며, 도서의 추천주기는 월별이 가장 많았다. 대체로 추천되는 도서는 서로 중복되지 않지만, 2019~2021년에 발행된 '문학'(소설)에서는 중복이 있었다. 추천도서는 일부 발행처에서 출판한 도서의 비중이 높았으며, 2019~2021년에 발행된 도서들이 가장 많았다. KDC 6판 기준으로 분석한 주제분야는 '문학'이 가장 많았다. ISBN 부가기호 기준으로 분석한 독자대상은 '교양', '아동' 도서 순으로 나타났고, 발행형태는 '단행본'과 '그림책, 만화' 순으로 나타났다. 이 결과를 바탕으로 공공도서관을 위한 온라인 북큐레이션 서비스 지침을 개발하고 플랫폼을 구축하여 도서관들이 공유하는 것을 제안하였다.

메타데이터를 이용한 음악 추천 기법 (Music Recommendation Technique Using Metadata)

  • 이혜인;윤성대
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.75-78
    • /
    • 2018
  • 최근 디지털 음반시장의 성장으로, 들을 수 있는 음악의 양이 기하급수적으로 늘어나고 있다. 이로 인해 온라인 음원 서비스 이용자들은 마음에 드는 음악을 선택하는데 어려움을 겪고, 많은 시간을 낭비하게 되었다. 본 논문에서는 온라인 음원 서비스 이용자들이 겪는 선택의 어려움을 최소화하고, 낭비되는 시간을 줄이기 위한 추천 기법을 제안하고자 한다. 제안하는 기법은 개인정보의 이용 없이 아이템을 추천할 수 있는 아이템 기반 협업필터링 알고리즘을 사용한다. 더 정확한 추천을 위해 음원의 메타데이터를 이용하여 사용자의 선호도를 예측하고 선호도가 높은 Top-N개의 음악을 최종적으로 추천한다. 실험을 통해 제안하는 기법이 메타데이터를 이용하지 않을 때보다 추천 성능이 향상되는 것을 확인하였다.

  • PDF

구매자의 구매 패턴을 이용한 상품추천서비스에 대한 연구 (A Study on Product Recommendation Service using Purchasing Pattern of Buyer)

  • 신민수;황준원;김성학;이창훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.313-316
    • /
    • 2000
  • 대부분의 온라인 전자상거래에서 상품 추천 서비스는 사용자의 정보 또는 구매 이력을 가지고 카테고리를 중심으로 상품을 추출하여 추천을 하는 구조이다. 또, 카테고리를 중심으로 추천을 하다 보니 단일한 구매 패턴에 의해서만 추천을 하게 되고, 상품에 각각에 대한 연관성을 찾아보기 힘들다. 또 단일 구매 패턴은 계산 비용이 작기는 하지만 사용자의 구매 패턴을 정확하게 반영하기 어렵다. 본 논문에서는 이러한 문제를 해결하기 위하여 카테고리 독립적이고, 다중 구매패턴을 고려한 상품추천 서비스의 설계를 제안한다 이를 위하여 단일 항목간의 구조화를 통하여 항목간의 연계성을 고려한 구조를 설계한다.

  • PDF

컨텍스트 인식 기반 상품 추천 시스템의 설계 (A Design of Recommendation System based on Context-Awareness)

  • 이송희;이근호;김정범;김태윤
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.52-54
    • /
    • 2002
  • 추천 시스템은 방문 고객 개개인의 취향이나 구매이력 등을 분석하여 고객이 필요로 하는 상품 또는 컨텐츠 정보의 서비스를 제공한다. 기존의 추천 시스템은 온라인에 초점을 맞추어 설계되었는데 본 논문에서는 무선 인터넷 서비스를 기반으로 무선 단말기(e.g. PDA, Cell Phone 등)를 통해 오프라인에서도 추천정보를 제공하는 시스템을 제안한다. 사용자에게 제공이 되는 추천 정보는 상품이나, 컨텐츠 또는 이벤트 정보이며 제안된 시스템에서는 데이터 마이닝 기법을 통해 데이터를 분류, 측정 및 예측하고 지식 기반방법과 collaborative filtering 방법을 혼합하여 양쪽의 장점만을 취하여 기존의 한정된 상품에 대한 정보와 침상에서만 제공이 되는 서비스를 오프라인까지 통합한 추천 시스템을 제안한다.

  • PDF

상품 추천 서비스 유형에 따른 소비자 반응 연구 : 프라이버시 계산 모델을 중심으로 (A Consumer Perception based on the Type of Recommender System : A Privacy Calculus Perspective)

  • 최혜진;조창환
    • 한국콘텐츠학회논문지
    • /
    • 제20권3호
    • /
    • pp.254-266
    • /
    • 2020
  • 상품 추천 서비스는 범람하는 온라인 정보 속에서 소비자의 정보탐색 시간을 절약해 준다. 본 연구에서는 프라이버시 계산 모델을 적용하여 추천 서비스 유형에 따른 소비자의 반응을 비교하였으며 인지된 개인화의 조절효과를 검증하였다. 연구 결과, 인지된 유용성과 클릭의도는 하이브리드 필터링 추천, 베스트셀러 추천, 지인기반 추천 순으로 높게 나타났고, 프라이버시 염려는 지인기반 추천, 하이브리드 필터링 추천, 베스트셀러 추천 순으로 높았다. 인지된 개인화는 인지된 유용성에 있어서 추천 서비스 유형과 상호작용효과가 존재하는 것으로 나타났다. 인지된 유용성은 클릭의도에 긍정적인 영향을 주었으나 프라이버시 염려는 클릭의도에 부정적인 영향을 주는 것을 확인했다. 본 연구는 추천 서비스 유형에 따른 소비자 반응을 비교하고 행동의도에 미치는 영향력을 검증했다는 데 의의가 있으며 추천 서비스를 제공하는 기업이나 알고리즘을 개발하는 실무자들에게 의미 있는 시사점을 제시할 수 있을 것으로 기대한다.