• Title/Summary/Keyword: 온라인 빔포밍

Search Result 1, Processing Time 0.014 seconds

Combining deep learning-based online beamforming with spectral subtraction for speech recognition in noisy environments (잡음 환경에서의 음성인식을 위한 온라인 빔포밍과 스펙트럼 감산의 결합)

  • Yoon, Sung-Wook;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.439-451
    • /
    • 2021
  • We propose a deep learning-based beamformer combined with spectral subtraction for continuous speech recognition operating in noisy environments. Conventional beamforming systems were mostly evaluated by using pre-segmented audio signals which were typically generated by mixing speech and noise continuously on a computer. However, since speech utterances are sparsely uttered along the time axis in real environments, conventional beamforming systems degrade in case when noise-only signals without speech are input. To alleviate this drawback, we combine online beamforming algorithm and spectral subtraction. We construct a Continuous Speech Enhancement (CSE) evaluation set to evaluate the online beamforming algorithm in noisy environments. The evaluation set is built by mixing sparsely-occurring speech utterances of the CHiME3 evaluation set and continuously-played CHiME3 background noise and background music of MUSDB. Using a Kaldi-based toolkit and Google web speech recognizer as a speech recognition back-end, we confirm that the proposed online beamforming algorithm with spectral subtraction shows better performance than the baseline online algorithm.