• Title/Summary/Keyword: 온라인 비즈니스

Search Result 344, Processing Time 0.02 seconds

Revision of Nutrition Quotient for Korean adolescents 2021 (NQ-A 2021) (청소년 영양지수 (NQ-A 2021) 개정에 관한 연구)

  • Ki Nam Kim;Hyo-Jeong Hwang;Young-Suk Lim;Ji-Yun Hwang;Sehyug Kwon;Jung-Sug Lee;Hye-Young Kim
    • Journal of Nutrition and Health
    • /
    • v.56 no.3
    • /
    • pp.247-263
    • /
    • 2023
  • Purpose: This study was conducted to update the Nutrition Quotient for Adolescents (NQ-A), which is used to assess the overall dietary quality and food behavior among Korean adolescents. Methods: The first 30 candidate items of the measurable eating behavior checklist were obtained based on a previous NQ-A checklist, the results of the seventh Korea National Health and Nutrition Examination Survey data, Korea Youth Risk Behavior Survey data, national nutrition policies and dietary guidelines, and literature reviews. A total of 100 middle and high school students residing in Seoul and Gyeonggi Province participated in a pilot study using the 25-item checklist. Factor analysis and frequency analysis were conducted to determine if the checklist items were organized properly and whether the responses to each item were distributed adequately, respectively. As a result, 22 checklist items were selected for the nationwide survey, which was applied to 1,000 adolescent subjects with stratified sampling from 6 metropolitan cities. The construct validity of the updated NQ-A 2021 was assessed using confirmatory factor analysis. Results: Twenty checklist items were determined for the final NQ-A 2021. The items were composed of three factors: balance (8 items), moderation (9 items), and practice (3 items). The standardized path coefficients were used as the weights of items to determine the nutrition quotients. NQ-A 2021 and 3-factor scores were calculated according to the weights of questionnaire items. The weight for each of the 3 factors was determined as follows: balance, 0.15; moderation, 0.30; and practice, 0.55. Conclusion: The updated NQ-A 2021 is a useful instrument for easily and quickly evaluating the dietary qualities and eating behaviors of Korean adolescents.

The Effect of Mentoring on the Mentor's Job Satisfaction: Mediating Effects of Personal Learning and Self-efficacy (멘토링이 멘토의 직무만족도에 미치는 영향: 개인학습 및 자기효능감의 매개효과)

  • Lee, In Hong;Dong, Hak Lim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.3
    • /
    • pp.157-172
    • /
    • 2023
  • The recent Fourth Industrial Revolution is accelerating changes due to digital transformation. According to this trend, the existing start-up paradigm is changing, and new business models based on new technologies and creative ideas are emerging. In addition, the diversity of mentoring relationships and environments such as online mentoring, reverse mentoring, group mentoring, and multiple mentoring is also increasing. However, most mentors in their 50s and 60s, who are mainly active in the start-up field, have been able to help mentees a lot based on their own experience and expertise, but they are having difficulty responding to the changing environment due to a lack of understanding and experience of new technologies and environments. To cope with these changes well, mentors must constantly study, acquire and apply the latest technologies to improve their understanding of new technologies and the environment. In addition, it is necessary to have an understanding and respect for the diversity of mentoring relationships and environments, and to maximize the effectiveness of mentoring by actively utilizing them. Therefore, mentors should recognize that they directly affect the growth and development of mentees, constantly acquire new knowledge and skills to maintain and develop expertise, and actively deliver their knowledge and experiences to mentees. Therefore, in this study, was tried to empirically analyze the relationship between mentoring's influence on mentor's job satisfaction through mentor's personal learning and self-efficacy. The results of the empirical analysis were as follows. Among the functions of mentoring, career function and role modeling were found to have a positive effect on both personal learning and self-efficacy, which are parameters, and job satisfaction, which is a dependent variable. On the other hand, psychological and social functions have a positive effect on personal learning, but they do not have an effect on self-efficacy and job satisfaction. In addition, as a result of analyzing the mediating effect, all mediating effects were confirmed for career functions, and only the mediating effect of self-efficacy was confirmed for role modeling. Through this study, mentoring is an important factor in promoting job satisfaction, personal learning and self-efficacy, and this study can be said to be academically and practically meaningful in that it confirmed personal learning and self-efficacy as factors that increase mentor's job satisfaction, and the focus of mentoring research was shifted from mentee to mentor to study the impact of mentoring on mentors.

  • PDF

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.