• Title/Summary/Keyword: 온도 시뮬레이션

Search Result 1,021, Processing Time 0.027 seconds

Numerical Simulation of Propylene Vertical Wall Fires (프로필렌 수직벽화재의 수치시뮬레이션)

  • Park, Woe-Chul
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.404-409
    • /
    • 2009
  • 수직벽 화재 예측의 정확성을 확인하기 위하여 화재 시뮬레이션용 전산유체역학 모델인 Fire Dynamics Simulator를 프로필렌 수직벽 화재에 적용하였다. 단위면적당 연소율 $7.0{\sim}29.29g/m^2-s$에 대한 버너 중심에서 측정한 온도분포와 비교한 결과, 최고온도가 낮게 예측되는 것 외에는 실험과 잘 일치하였다. 또 연소율의 증가에 따라 경계측의 두께가 일관되게 증가하였다.

  • PDF

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

The Passenger Evacuation Simulation Using Fluent and EXODUS (Fluent와 EXODUS를 이용한 승객피난 시뮬레이션)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Park, Won-Hee;Jung, Woo-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.95-100
    • /
    • 2008
  • The simulation analysis of fire-driven flow and passenger evacuation in Daegu subway station, Chung-Ang, have been performed. The first location of outbreak of fire is inside passenger car in the third basement in Chung-Aug station, The smoke flow in the second and third basement has been analyzed using FLUENT 6.2. The CO (carbon monoxide) and temperature distribution in the train units and station platform have been obtained and transferred to input data for evacuation simulation. The highest temperature in the train units was 1500k. For the simulation of passenger evacuation, EXODUS has been used for whole basements (level 1${\sim}$level 3) in the station. Total number of people was assumed to be one thousand and 640 were placed inside train and 360 were placed outside train. In evacuation simulation, an average of 135 passengers were killed and an average time to evacuate takes 10min 19sec. The main evacuation routes used by passengers were investigated and the cause of death was identified by evacuation simulation.

Simulation of Heat and Smoke Behavior for Wood and Subway Fires by Fire Dynamics Simulator(FDS) (FDS에 의한 목재 및 지하철 화재의 열 및 연기 거동 시뮬레이션)

  • Sonh, Yun-Suk;Dan, Seung-Kyu;Lee, Bong-Woo;Kwon, Seong-Pil;Shin, Dong-Il;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In this study, to propose the analysis method of heat and smoke behavior of fire using the CFD-based fire simulator FDS, comparison of the simulation results against the experimental results and the sensitivity of the results to the grid sizes have been investigated. For the wood fire, thermal images captured from the experiments were compared against the FDS simulations, and the maximum temperatures agreed in~4.3 % error, showing the applicability of FDS in the interpretation of the fire phenomena. In the aspect of the sensitivity to the grid size for the subway fire, FDS results of smoke temperature, CO concentration and visibility converged and showed no distinct changes for the grid size < $28(L){\times}28(W){\times}14(H)$, guaranteeing that the FDS fire model set in this research could interpret the fire phenomena successfully.

A Study on Analysis Technique for Solenoid Valve Applicable to Military Vehicle Transmission (군용차량 변속기에 적용할 수 있는 솔레노이드밸브 해석기술에 관한 연구)

  • Choi, Yun-Yong;Hong, Jung-Pyo
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.29-34
    • /
    • 2015
  • Electronic of military vehicle that had relied on pure machinery system is ongoing. A large part of electronic of small-sized military vehicle has been already commercialized, which will expand to large-sized military vehicle field. Design of solenoid valve for automatic transmission is significantly important for stable driving performance of military vehicle. This research aims to develop simulation method which is capable of predicting performance of solenoid valve quantitatively according to its variation of ATF temperature. The research has been conducted in line with Maxwell, a magnetic field analysis program, and AMESim, a hydraulic analysis program. After simulation, it turned out to have been very similar to the test result in temperature range which excludes high temperature (over $120^{\circ}C$) and extremely low temperature (below $-20^{\circ}C$).

A Study on Joule Heating Simulation Method to Prevent Sensitivity Current Trip of Electric Vehicle Charger (전기자동차 충전기의 누전차단기 감도 전류 Trip 방지를 위한 Joule Heating 시뮬레이션 방안연구)

  • Lee, Beoung-Kug;Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.150-159
    • /
    • 2021
  • This study aimed to prevent inconvenience to electric vehicle users caused by an interruption of charging by the earth leakage breaker trip that occurs during charging. As a field case study, it was confirmed that during the battery charger failure type, leakage current measurement experiment by vehicle type, and leakage current breaker operation experiment, the internal temperature of the charger rose to more than 60 ℃ in summer, and the earth leakage circuit breaker stopped charging by tripping at 80% of the rated sensitivity current. Through Joule heating modeling, 32A is energized at the reference temperature of 30 ℃ at the initial time t=0 (s). After t=3000 (s), the heat generated around the charging part of the earth leakage breaker increased to 32.4 ℃. The temperature and time factors correlated with the amount of heat generated according to the statistical verification tool with a correlation coefficient of 0.97. Overall, it is possible to prevent the leakage breaker sensitivity current trip due to an increase in temperature inside the charger in summer by performing a Joule heating simulation according to the material of the charging case, the arrangement of the internal wiring, and the dielectric medium when developing the charger device.

IGRINS 광학 모듈의 온도 및 진공 환경 변화에 따른 광학적 특성

  • Go, Gyeong-Yeon;Han, Jeong-Yeol;O, Hui-Yeong;Na, Ja-Gyeong;Yuk, In-Su;Park, Chan;Lee, Seong-Ho;Cheon, Mu-Yeong;Jaffe, Dan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.203.2-203.2
    • /
    • 2012
  • IGRINS는 R=40,000의 해상도를 가지고 130K의 저온과 진공 환경에서, 한 번에 H와 K밴드 영역을 동시에 관측할 수 있도록 설계 된 적외선 분광기이다. 이 분광기에는 망원경 초점을 슬릿에 전달하는 IO (Input relay Optics) 모듈과 슬릿을 이미징하는 SVC (Slit Viewing Camera) 모듈 등 2개의 광학모듈이 있다. 광학모듈은 상온 및 저온(130K) 등 온도 변화와 진공 및 비진공 등 환경의 변화를 겪게 되는데, 이 과정에서 변화하는 광학성능을 시뮬레이션과 실험결과로 추적하였다. 시뮬레이션은 ZEMAX 소프트웨어를 사용하였고, 간섭계는 Phasecam 5030을 사용하였으며, IGRINS test dewar 내에 모듈을 설치하여 1,000 class급 청정도 환경에서 WFE를 측정 하였다. Test dewar는 빛이 통과할 수 있는 2개의 윈도우가 있는데, 윈도우는 test dewar 내부와 외부의 진공 및 온도 등 환경 변화에 따라 물리적인 변화가 발생하여 최종 WFE값에 영향을 준다. 본 연구에서는 IGRINS 광학모듈이 진공 및 냉각 상태에서 WFE가 변화하는 양상을 살펴봄으로써, 환경 변화에 따른 광학적 효과를 정량적으로 살펴본 결과를 소개할 것이며, 이 결과는 IGRINS 전체 광학계의 조립 및 정렬 시 환경 변화의 효과를 미리 예측할 수 있도록 하는 자료로 활용될 것이다.

  • PDF

Study on the Available Safe Egress Time (ASET) Considering the Input Parameters and Model Uncertainties in Fire Simulation (화재시뮬레이션에서 입력변수 및 모델 불확실도가 고려된 허용피난시간(ASET)에 관한 연구)

  • Han, Ho-Sik;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.112-120
    • /
    • 2019
  • To improve the reliability of a safety assessment using a fire simulation in domestic PBD, the evaluation method of ASET considering the uncertainties of the input parameters and numerical model of fire simulation was carried out. To this end, a cinema and officetel were selected as the representative fire spaces. The main results were as follows. Considering the uncertainty of the heat release rate, which has the greatest effect on the major physical quantities presented in the life safety standard, significant changes in temperature, CO, and visibility occurred. In addition, when the bias factors reflecting the uncertainty of the numerical model were applied, there were no significant changes in temperature and CO concentration. On the other hand, the visibility was increased considerably due to the low prediction performance of smoke concentration in FDS. Finally, the reason why the physical quantity determining the ASET in domestic PBD is mainly visibility was discussed, and the application of uncertainty of the input parameters and numerical model in a fire simulation was suggested for an accurate ASET evaluation.

Simulation of Silicon Carbide Converted Graphite by Chemical Vapor Reaction (Ⅰ) (화학적 기상 반응에 의한 탄화규소 피복 흑연의 시뮬레이션(Ⅰ))

  • Lee, Joon-Sung;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.846-852
    • /
    • 2001
  • A two-dimensional Monte Carlo simulation has been used to investigate the effect of the reaction temperature on the formation of the silicon carbide conversion layer near the surface of graphite substrate The carbothermal reduction of silica is the reaction mechanism of silicon carbide formation on graphite substrate by chemical vapor reaction methods. The chemical composition of silicon carbide conversion layer gradually changes from carbon to silicon carbide because gaseous reactants diffuse through micropores within graphite substrate and react with carbon at the surface of inner pores. The simulation was carried out under the condition of reaction temperature at 1900K, 2000K, 2100K and 2200K for 500MCS. It was found from the results of simulation that the thickness of silicon carbide conversion layer increases with reaction temperature.

  • PDF