• Title/Summary/Keyword: 온도 성층화

Search Result 76, Processing Time 0.026 seconds

An Experimental Study on the Thermal Characteristics of Direct Contact Liquid-Ice Heat Exchanger (직접접촉식 액-빙 열교환기의 전열특성에 관한 실험적 연구)

  • Lee, Chae-Moon;Park, Jung-Won;Kim, Dong-Hun
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.65-77
    • /
    • 1996
  • The operating thermal chracteristics of direct contact liquid-ice heat exchanger was experimentally investigated. In this paper, The effects of Ice Packing Factor(IPF), the inlet temperature and the flow rate of Heat Transfer Fluid(HTF) were stuided in the liquid-ice heat exchanger. Thermal stratification in liquid-ice heat exchanger was established clearly and faster at the higher inlet temperature and flow rate of HTF. At the end of melting of the lower flow rate is cleared the thermal stratification in liquid-ice heat exchanger. The temperature stratification is long with higher value of IPF of liquid-ice heat exchanger. The mean temperature of liquid-ice storage was changed rapidly with increasing flow rate and inlet temperature of HTF. The gradiant of ratio of total energy to latent energy was found higher with increasing inlet temperature and flow rate.

  • PDF

Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis (온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구)

  • Jeong, Dong-Won;Kwon, O-Seok;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.

An Experimental Study on the Thermal Characteristics of Ice Storage Tank - Focusing on the Adiabatic Effects of Ice Storage Tank - (직접접촉식 빙축열조의 전열특성에 관한 연구 - 빙축열조의 단열영향을 중심으로 -)

  • Lee, Chae-Moon;Park, Jung-Won;Cho, Nam-Chul;Park, Sang-Rok;Kim, Il-Gyoum;Kim, Dong-Chun;Kim, Young-Ki;Yim, Chang-Soon
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.75-89
    • /
    • 1997
  • In this paper, the operating thermal characterictics of liquid-ice was expeimentally investigated in an adiabatic and a non-adiabatic direct contact liquid-ice heat exchanger. Experiments were carried out varing inlet temperature, Ice Packing Factor, and the flow rate of heat transfer fluid. The higher inlet temperature and the more much inlet flow rate, thermal stratification in liquid-ice heat exchanger was established faster. In the case of adiabatic ice storage tank, temperature distribution was a little higher at all conditions than that of non-adiabatic one. The ratio of latent energy to total discharge energy($E_{\lambda}/E_[tot}$) was about 80%, and the discharge of latent heat energy was appeared rapidly as inlet temperature and flow rate were higher.

  • PDF

Simulating Stratified Reservoir Mixing by a Convection Circulator (대류 순환식 폭기장치에 의한 성층화된 저수지 혼합 모의)

  • Lee, Yo-Sang;Lee, Gwang-Man;Koh, Deuk-Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.469-473
    • /
    • 2009
  • 저수지에서 잠재적 대규모 조류발생을 감소시키기 위하여 인공적 성층파괴 장치가 2006년 용담댐에 설치되었다. 본 연구는 저수지에서 여름철 발생하는 성층파괴에 대한 대류순환식 폭기장치의 효과를 검토하기 위해 수행되었다. 성층파괴 장치의 성능을 분석하기 위하여 반경 25m, 높이 45m의 실린더 용기에 34.6만개의 격자로 구성된 CFD모형을 적용하였다. 적용결과, 사면체 격자는 온도와 유속에서 실측자료와 밀접하게 일치하였다. 이와 같은 결과는 난류확산항이 제거되었을때 보다 태양광 열전도를 고려한 경우가 보다 좋은 결과를 보였다. 결과적으로 성층파괴 장치의 지속적인 운영은 인공적 외부력을 통하여 성층화된 수체를 혼합시키는데 유용할 것으로 나타났으나 현재 설치되어 있는 장비로는 크기나 숫자에서 충분하지 못해 원래 목적을 달성하기에는 부족한 것으로 나타났다.

  • PDF

Methods to Characterize the Thermal Stratification in Thermal Energy Storages (열에너지 저장소 내 열성층화를 평가하기 위한 기법)

  • Park, Dohyun;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • A primary objective in creating a stratified thermal storage is to maintain the thermodynamic quality of energy, so thermally stratified energy can be extracted at temperatures required for target activities. The separation of the thermal energy in heat stores to layers with different temperatures, i.e., the thermal stratification is a key factor in achieving this objective. This paper introduces different methods that have been proposed to characterize the thermal stratification in heat stores. Specifically, this paper focuses on the methods that can be used to determine the ability of heat stores to promote and maintain stratification during the process of charging, storing and discharging. In addition, based on methods using thermal stratification indices, the degrees of stratification of stored energy in Lyckebo rock cavern in Sweden were compared and the applicability of the methods was investigated.

Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater (상부 코일히터를 갖춘 나선재킷형 태양열 축열조의 성능예측을 위한 CFD 해석모델 개발 및 검증)

  • Baek, Seung Man;Zhong, Yiming;Nam, Jin Hyun;Chung, Jae Dong;Hong, Hiki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In a solar domestic hot water (SDHW) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (TST) as hot water. In this study, a computational fluid dynamics (CFD) model was developed to predict the solar thermal energy storage in a hybrid-type TST equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a TST, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the TST. The developed model was validated by the good agreement between the CFD results and the experimental results performed with the hybrid-type TST in SDHW settings.

Comparison of DME HCCI Operating Ranges for the Thermal Stratification and Fuel Stratification based on a Multi-zone Modeling (Multi-zone 모델링을 통한 온도성층화와 농도성층화가 존재하는 DME HCCI 엔진의 운전영역에 관한 수치해석연구)

  • Jeong, Dong-Won;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • This work investigates the potential of in-cylinder thermal stratification and fuel stratification for extending the operating ranges in HCCI engines, and the coupling between thermal stratification and fuel stratification. Computational results areemployed. The computations were conducted using both a custom multi-zone version and the standard single-zone version of the Senkin application of the CHEMKINII kinetics rate code, and kinetic mechanism for di-methyl ether (DME). This study shows that the potential of thermal stratification and fuels stratification for extending the high-load operating limit by a staged combustion event with reduced pressure-rise rates is very large. It was also found that those stratification offers good potential to extend low-load limit by a same mechanism in high-load. However, a combination of thermal stratification and fuel stratification is not more effective than above stratification techniques for extending the operating ranges showing similar results of fuel stratification. Sufficient condition for combustion (enough temperature for) turns misfire in low-load limit to operate engines, which also leads to knock in high-load limit abruptly due to the too high temperature with high. DME shows a potential for maximizing effect of stratification to lower pressure-rise rate due to the characteristics of low-temperature heat release.

Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics (화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.449-456
    • /
    • 2010
  • The HCCI engine is a prospective internal combustion engine with which high diesel-like efficiencies and very low NOx and particulate emissions can be achieved. However, several technical issues must be resolved before HCCI engines can be used for different applications. One of the issues concerning the HCCI engine is that the operating range of this engine is limited by the rapid pressure rise caused by the release of excessive heat. This heat release is because of the self-accelerated combustion reaction occurring in the engine and the resulting engine knock in the high-load region. The purpose of this study is to evaluate the role of thermal stratification and fuel stratification in reducing the pressure rise rate in an HCCI engine. The concentrations of NOx and CO in the exhaust gas are also evaluated to confirm combustion completeness and NOx emission. The computation is carried out with the help of a multizone code, by using the information on the detailed chemical kinetics and the effect of thermal and fuel stratification on the onset of ignition and rate of combustion. The engine is fueled with dimethyl ether (DME), which allows heat release to occur in two stages, as opposed to methane, which allows for heat release in a single stage.

Study on the Effect of Thermal Stratification on DME/n-Butane HCCI Combustion (열적성층화가 DME/n-Butane 예혼합압축자기착화연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1035-1042
    • /
    • 2010
  • The thermal stratification effect has been thought as one of the way to avoid dramatically generating the heat from HCCI combustion. We investigate the effect of thermal stratification on HCCI combustion fueled by DME and n-Butane. The thermal stratification occurs in a combustion chamber of a rapid compression machine with premixture by buoyancy effect that is made of fuel and air. The premixture is then adiabatically compressed, and during the process, the in-cylinder gas pressure is measured and two-dimensional chemiluminescence images are prepared and analyzed. Under the thermal stratification, the LTR starting time and the HTR starting time are advanced than that of homogeneous case. Further, the LTR period and the luminosity duration under homogeneous conditions are shorter than the corresponding quantities under stratified conditions. Additionally, under stratified conditions, the brightest luminosity intensity is delayed longer than that of homogeneous condition.

Analyzing the effect of global warming on the thermal stratification in Chungju reservoir (지구온난화가 충주호 수온 성층구조에 미치는 영향 분석)

  • Yoon, Sung-Wan;Chung, Se-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.133-133
    • /
    • 2012
  • 기후변화에 관한 정부 간 패널 IPCC의 4차 보고서에 의하면 지난 100년간 지구 평균 기온의 선형추세선 기울기가 $0.74^{\circ}C$/년을 보이고 있으며 21세기말 지구의 평균기온은 최대 $6.3^{\circ}C$까지 더 상승할 것으로 전망하고 있다. 이러한 대기기온의 상승은 저수지 및 하천의 수온과 밀접한 관계를 지니는데, 저수지 표층 수온 및 유입 하천의 수온을 증가시켜 저수지 수온 성층형성시기를 앞당겨 성층화 기간을 증가시키고 또한 성층강도도 증가하게 된다. 이러한 수온성층기간 및 강도의 증가는 심수층의 용존산소 고갈과 이에 따른 퇴적층의 영양염류 용출량을 증가시켜 저수지 수질관리에 어려움을 야기할 것으로 전망되고 있다. 특히 온대기후대에 속하는 우리나라의 대부분의 대형 인공 저수지는 여름철 뚜렷한 수온성층구조가 확인되고 있어 대기기온 상승이 수온성층구조에 미치는 영향을 분석하는 것은 미래 기후변화에 대비한 저수지 수질관리 전략 수립을 위해 필요한 기초 연구라 판단되어진다. 본 연구에서는 2차원 횡방향 평균 수치모형(CE-QUAL-W2)을 활용하여 대기 온도 변화에 따른 충주호의 수온분포를 모의하고 수온 성층구조의 변동경향을 분석하였다. 지구 온난화 영향 모의에 앞서 2010년과 2008년의 충주호 수문조건에 모형을 적용하여 수온 성층구조의 재현성을 확인하였다. 미래 대기기온 자료는 국립기상연구소에서 제공하는 한반도 기후전망 모의자료(RCM) 중 충주댐 유역의 평균 기온자료를 수집하여 사용하였으며, 모의연도는 2011, 2040, 2070, 2100으로 하였다. 또한, 대기기온과 유입수온 자료를 제외한 모든 입력자료는 보정년도인 2010년과 동일하다고 가정하여 대기기온 변화의 영향만을 고려하였다. 2011년에 비해 2100년의 대기기온이 연평균 $2.44^{\circ}C$ 증가하였을 때 표층수온은 평균 $1.72^{\circ}C$, 최대 $4.31^{\circ}C$ 증가하는 것으로 나타났으며, 심층수온은 평균 $0.36^{\circ}C$, 최대 $1.33^{\circ}C$ 증가하는 것으로 나타났다. 성층구조 형성기간의 비교를 위해 표층과 심층의 수온이 $5^{\circ}C$ 이상의 차이를 보이는 기간을 조사한 결과 2011년에 비해 2100년에서 5일 일찍 시작되어 11일 더 지속되는 것으로 나타났다.

  • PDF