• Title/Summary/Keyword: 온도반응함수

Search Result 174, Processing Time 0.023 seconds

Effects of Light, Temperature, Water Changes on Physiological Responses of Kalopanax pictus Leaves(I) - Characteristics of Photosynthesis and Respiration of Leaves by the Light Intensity - (광, 온도, 수분 변화에 따른 음나무 엽의 생리반응(I) - 광도변화에 따른 광합성과 호흡 특성 -)

  • Han, Sang-Sup;Jeon, Doo-Sik;Sim, Joo-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.83-91
    • /
    • 2005
  • This research was carried out to elucidate the photosnthesis, respiration, and intercellullar $CO_2$ concentration of Kalopanax pictus leaves. The results obtained are summarized as follows; 1. The light compensation points in leaves of Kalopanax pictus seedlings were in the following order; the upper ($34{\mu}mol\;m^{-2}s^{-1}$) middle ($29{\mu}mol\;m^{-2}s^{-1}$) lower leaves ($24{\mu}mol\;m^{-2}s^{-1}$). The light saturated points were at $800{\sim}1200{\mu}mol\;m^{-2}s^{-1}$ in the upper leaves and $400{\mu}mol\;m^{-2}s^{-1}$ in the middle and lower leaves. At the light saturated points, the net photosynthesis rate was in the following order; the upper ($11.1{\mu}mol\;CO_2\;m^{-2}s^{-1}$) middle ($5.15{\mu}mol\;CO_2\;m^{-2}s^{-1}$) lower leaves ($4.01{\mu}mol\;CO_2\;m^{-2}s^{-1}$). The light use efficiency was in the following order; the upper ($0.041{\mu}mol\;CO_2\;{\mu}mol^{-1}$) middle ($0.040{\mu}mol\;CO_2\;{\mu}mol^{-1}$) lower leaves ($0.039{\mu}mol\;CO_2\;{\mu}mol^{-1}$). 2. In the upper leaves of Kalopanax pictus seedlings, the stomatal conductance increased continuously with increasing light intensity. In the middle and lower leaves, it was saturated at $400{\mu}mol\;m^{-2}s^{-1}$. 3. In the upper, middle and lower leaves of Kalopanax pictus seedlings, the intercellular $CO_2$ concentration/the atmospheric $CO_2$ concentration ($C_i/C_a$) ratio rapidly decreased to $600{\mu}mol\;m^{-2}s^{-1}$, and then showed a constant values. 4. In the upper leaves of Kalopanax pictus seedlings, the photorespiration rate was $3.34{\mu}mol\;CO_2\;m^{-2}s^{-1}$ and $CO_2$ compensation point was $48.7{\mu}mol\;mol^{-1}$. Dark respiration rate increased exponentially with increasing leaf temperature, and the photorespiration rate was 2.4 times higher than dark respiration rate.

  • PDF

Operation of High Performance Elutriation-Type Sludge Fermenter and Feasibility for Its Application (고성능 세정식 슬러지 산발효조의 운전 및 적용성 평가)

  • Ahn, Young-Ho;Speece, R.E.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • The performance of a novel fermentation process, adopting a sludge blanket type configuration for higher hydrolysis/acidogenesis of the municipal primary sludge, was investigated under batch and semi-continuous conditions with various pH and temperature conditions. This acid elutriation slurry reactor provided higher system performance with a short HRT (5 days) and higher acidogenic effluent quality under pH 9 and thermophilic ($55^{\circ}C$) conditions. The hydrolysis of the sludge was revealed to be significantly dependent on seasonal effects for sludge characteristics but with little impact on acidogenesis. Based on the rainy season at the optimum conditions, VFA production and recovery fraction ($VFA_{COD}/COD$) were $0.18\;g\;VFA_{COD}\;g^{-1}\;VSS_{COD}$ and 63%. As byproducts, nitrogen and phosphorus releasing were $0.006\;g\;N\;g^{-1}\;VSS_{COD}$ and $0.003\;g\;P\;g^{-1}\;VSS_{COD}$, respectively. For the mass balance in a full-scale plant($Q=158,880\;m^3\;day^{-1}$) based on the rainy season, the VFA and non-VFA(as COD) production were $3,110\;kg\;VFA_{COD}\;day^{-1}$ and $1,800\;kg\;COD\;day^{-1}$, resulting in an increase of organics of $31\;mg\;COD\;L^{-1}$ and $20\;mg\;VFA_{COD}\;L^{-1}$ and nutrients of $0.7\;mg\;N\;L^{-1}$ and $0.3\;mg\;P\;L^{-1}$ in the influent sewage. The economical benefit from this process application was estimated to be about $67 per $1,000m^3$ of sewage except for energy requirements and also, better benefits can be expected during the dry season. Also, the results revealed that the process has various additional advantages such as pathogen-free stabilized solids production, excellent solids control and economical benefits.

Characterization of an Extracellular Xylanase from Bacillus sp. HY-20, a Bacterium in the Gut of Apis mellifera (꿀벌(Apis mellifera)의 장내 세균인 Bacillus sp. HY-20이 분비하는 Xylanase의 특성)

  • Lee, Lan-Hee;Kim, Do-Young;Han, Mi-Kyoung;Oh, Hyun-Woo;Ham, Su-Jin;Park, Doo-Sang;Bae, Kyung-Sook;Sok, Dai-Eun;Shin, Dong-Ha;Son, Kwang-Hee;Park, Ho-Yong
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.332-338
    • /
    • 2009
  • A xylan-decomposing bacterium, HY-20, was isolated from the gut of a honeybee, Apis mellifera, and identified as Bacillus sp. The extracellular GH11 xylanase (XylP) gene (687-bp) of strain HY-20 encoded a protein of 228 amino acids with a deduced molecular mass of 25,522 Da and a calculated pI of 9.33. The primary structure of XylP was 97% identical to that of B. pumilus xylanase (GenBank accession no.: AY526092) that has not been characterized yet. The recombinant His-tagged enzyme (rXylP) overexpressed in Escherichia coli BL21 harboring pET-28a(+)/xylP was purified to electrophoretic homogeneity by cation exchange and gel permeation chromatographies. The purified enzyme exhibited the highest catalytic activity toward birchwood xylan at pH 6.5 and $50^{\circ}C$ and retained approximately 50% of its original activity when pre-incubated at $55^{\circ}C$ for 15 min. The recombinant enzyme was completely inactivated by $Hg^{2+}$ (1 mM) and N-bromosuccinimide (5 mM), while its activity was slightly stimulated by approximately 10% in the presence of $Mn^{2+}$ (1 mM), $Fe^{2+}$ (1 mM), and sodium azide (5 mM). rXylP was able to efficiently degrade various polymeric xylose-based substrates but PNP-sugar derivatives and glucose-based polymers were not susceptible to the enzyme.

Improvement of Nitrification Efficiency by Activated Nitrifying Bacteria Injection at Low Temperature (활성화된 질산화균 주입에 의한 저온 질산화효율 향상)

  • Lim, Dongil;Kim, Younghee
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.473-483
    • /
    • 2018
  • In this study, we have developed a lab scale bioreactor to identify the characteristics of nitrification reaction according to operation condition (temperature, inhibitor (as Cl), activated nitrifying bacteria (ANB). etc) to improve nitrification efficiency at low temperature. Recovery rate of nitrification took about 4 days to reach the normal level by injected ANB after inhibition shock of CI injection at $20^{\circ}C$, when measured the concentration of $NO_2{^-}-N+NO_3{^-}-N$ in the effluent. In the case of $10^{\circ}C$, recovery of nitrification rate took about 4 days to reach the level of half to the normal level and 7 days for complete recovery which took 3 days more than those at $20^{\circ}C$. At $10^{\circ}C$ considering the winter season, the specific nitrification rate(SNR) of the from 1 day to 6 days after injected ANB according to its operation condition increased from 0.029 to 0.767 mgN/gSS/hr. The simulated SNR for the 8th day after the injected ANB at $10^{\circ}C$ was 0.840, 3.625 mgN/gSS/hr, respectively as linear function and exponential function, expecting to exceed level of 2.592 mgN/gSS/hr at normal condition. It was confirmed that injection of ANB during low temperature operation has many effects for improving nitrification efficiency through this study. In future studies, if further studies are carried out the determination of ANB injection and the design of efficient ANB reactor considering the changes of operating characteristics by site, it will contribute to the improvement of nitrification efficiency in winter season.