• 제목/요약/키워드: 온도경화

Search Result 535, Processing Time 0.027 seconds

Electrical Properties and Preparation of 6FDA/4-4'DDE Polyimide Thin films by Bapor Deposition Polymerization method (진공증착중합법을 이용한 6FDA/4-4'DDE 폴리이미드 박막의 제조와 전기적 특성)

  • 이붕주;김형권;이덕출
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.229-236
    • /
    • 1998
  • In this paper, thin films of Polyimide (PI) were fabricated by vapor deposition polymerization method (VDPM) of dry processes. The film's properties with curing temperature and electrical properties were studies. The synthesis of hexafluoroisopropyliden-2,2-bis[phthalic anhydride](6FDA) and 4, 4'-diamino diphenyl ether (DDE) was carried out by vapor deposition polymerization(VDP) with the same deposition rate. The evaporation temperature of 6FDA and DDE were $214^{\circ}C$ and $137^{\circ}C$, respectively, so as to preserve balance of stoichiometry. The polymic acid (PAA) made by VDPM were changed to PI by thermal curing. The uniformity and density of PI thin films were increased according to increasing curing temperature. The relative permittivity and dissipation loss factor were 3.7 and 0.008 at the frequency of 100Hz~200KHz, respectively, for the fabricated in the curing temperature of $300^{\circ}C$. Also, the resistivity was about 1.05$\times$$ 10^{15}$$\Omega$cm at $30^{\circ}C$.

  • PDF

Cure Cycle for Thick Glass/Polyester Composites (두꺼운 유리섬유/폴리에스터 복합재료를 위한 경화 사이클)

  • 김형근;오제훈;이대길
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.33-42
    • /
    • 2001
  • The cure kinetic equation fur 52-glass/polyester prepreg composites was established through DSC (differential scanning calorimetry). Using the established kinetic equation, the temperature distribution of the thick composite was calculated considering the change of heat transfer resistance due to resin impregnation of bleeder plies used. In order to reduce the overheat during cure of thick glass fiber composites, the cure cycle was modified by introducing the cooling and reheating steps. Then the thick glass composites were cured both by the conventional cycle without any cooling or reheating step and the modified cure cycle. The mechanical properties of the thick composites cured by the both cycles were tested by the short beam shear test and the Barcol hardness test, and then their results were compared.

  • PDF

Synthesis of Water Soluble Anti-Static Composition and It’s Application for PVC Floor (수용성 대전방지제의 합성 및 이를 이용한 PVC 바닥재 코팅)

  • 이도현;하진욱
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.73-75
    • /
    • 2001
  • 본 연구에서는 무용제 타입의 알킬(alkyl)기를 가진 친수성 4차 암모늄염인 대전방지제(Ultramer 5530)를 합성, 유/무광 수용성 수지와 배합하여 PVC 바닥재에 열경화 코팅을 행하였다. 대전방지 코팅액은 Ultramer 5530을 광택조절이 가능한 유/무광 수용성 수지에 무게 기준으로 5-20 wt%(이하 ‘part’로 표기)범위로 첨가, 배합하여 제조하였다. 대전방지 코팅 처리전 PVC 바닥재의 표면저항은 10/sup 12/Ω이었으나 코팅 후 표면저항은 유광 수지의 경우 최대 10/sup 8/Ω, 무광 수지의 경우 최대 10/sup 6/Ω까지 감소하였다. 유/무광 수지 모두 경화조건에 관계없이 일반적으로 Ultramer 5530의 첨가량이 증가할수록 코팅된 PVC 바닥재의 표면저항은 현저히 감소하였다. 경화온도 l00℃에서 1분간 경화한 콜이도막은 Ultramer 5530의 첨가량이 증가함에 따라 전기저항이 현저하게 감소하였으나 경도 및 부착률 등의 코팅도막 물성이 현저히 저하됨을 알 수 있었다. 이러한 물성 저하는 경화온도를 80℃로 낮추고 경화시간을 20분으로 늘리면 해결할 수 있었다. 본 연구결과, PVC 바닥재의 표면에 형성된 코팅도막의 물성은 Ultramer 5530의 첨가량을 8 part로 하고 120℃에서 1분간 열경화를 시켰을 때 가장 좋았다.

The Effects of the Dehumidifying Membrane Dryer for the Curing Processes of Waterborne Adhesives (수용성 접착제 경화 공정용 제습 막 건조기 시스템의 효과)

  • Yu, Seoyoon;Lim, Choong-Sun;Seo, Bongkuk
    • Journal of Adhesion and Interface
    • /
    • v.17 no.2
    • /
    • pp.62-66
    • /
    • 2016
  • The curing processes of waterborne adhesives are in general undergone by using hot-air dryer. The hot-air dryer curing the adhesives with heat has a disadvantage of requiring high temperature over $100^{\circ}C$ as well as curing time as long as 20 min. When it comes to the heat control, high temperature open disturbs the adhesion of substrates by extremely lowering the viscosity of the adhesives. Furthermore, the humidity resulting from the drying process makes the curing condition irregularly. In this report, dehumidifying membrane dryer was used in order to keep the curing process same by removing humidity caused by the evaporation of water during the drying process, and to shorten the curing time. Here, we compared the peel strength of attached substrates in the dehumidifying membrane dryer to find out appropriate curing condition and confirm the effects of the dehumidifying membrane.

The Effect of Mass Transfer on the Cure Properties of the Urea Resin Moulding Compounds Under the Drying Process (건조 공정 중 요소 수지 성형재료의 경화 특성에 대한 물질전달 효과)

  • Kim, Sang Yeul;Choi, Il Gon;Kim, Byoung Chul
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.681-686
    • /
    • 2002
  • In the industrial field, the theory of drying process is different from the practical application, and it is effective to reduce energy by recirculation of the heat of exhausting gas. But the study of this field may not be performed still. The cure properties of the urea resin moulding compounds was investigated according to drying temperature, drying time, recycle rate of exhausting gas and moulding temperature in the process of drying and moulding. We obtained the following results; water content of material decreases with increasing drying time and drying temperature, and the rate of drying also decreases with increasing recycle rate of exhausting gas. Specially, The cure fluidity of the urea resin moulding compounds decreases, with increasing drying temperature, recycle rate of exhausting gas and moulding temperature. And the correlation equations on water content and cure fluidity of the urea resin moulding material were obtained through a regression analysis of experimental data.

Evaluation of Bond Performance of Self-Healing Agents Using Single lap Shear Test (Single Lap 전단시험을 적용한 자가치료제의 접착성능 평가)

  • 윤성호;박희원;허광수
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.40-46
    • /
    • 2004
  • A single lap shear test was used to investigate the effects of the ratio of a catalyst to a self-healing agent and curing temperature on the bond performance of autonomic polymer composites. DCPD (dicyclopentadiene), ENB (5-ethylidene-2-norbornene), and their mixture were used as self-healing agents and bis(triclohexylphosphine) benzyllidine ruthenium (IV) dichloride Grubbs' catalyst was used as a catalyst. During the experiments, the catalyst ratios of 1.0wt% and 0.5wt% were applied to DCPD, the catalyst ratio of 0.lwt% was applied to ENB, and the catalyst ratio of 0.5wt% was applied to the mixtutes of DPCD and ENB. In addition, the curing temperatures of $25^{\circ}C$, $60{\circ}C$, and $80^{\circ}C$ were considered. According to the results, the higher catalyst ratio and the longer curing time were required to obtain more stabilized bond shear strength of DCPD. ENB with a lower catalyst ratio was cured faster than DCPD. Unlike DCPD, ENB stabilized after a steady fall from its peak as the curing time increased. Moreover, the mixtures of DCPD and ENB revealed similar curing behavior to ENB, but the increase in mixture ratio of ENB to DCPD caused curing process to be faster. Also the increase in curing temperature caused the bond shear strength to be higher and the curing time to be quicker.

Effect of Hardening Accelerators on the Adiabatic Temperature property Properties of Precast Concrete and FEM analysis for Evaluating the Crack Performance (경화촉진제를 사용한 프리캐스트 콘크리트의 단열온도특성 및 FEM해석에 의한 균열성능 평가에 관한 연구)

  • Min, Tae-Beom;Cho, In-Sung;Mun, Young-Bum;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, initial crack index was evaluated by FEM analysis to find the crack propagation from hydration heat in precast concrete. As results, as the usage of hardening accelerator increased, initial compressive strength increased and setting time was shortened. Additionally, as amounts of hardening accelerators increased, the central temperature of concrete increased and the time to reach the highest temperature was shortened. It was demonstrated that the hardening accelerators accelerated the hydration reaction of cement, and caused the increase of hydration heat within the short period of time. Furthermore, the crack index for evaluating the heat level was performed by FEM. As results, there was no problem about the cracks, despite of the growth of initial high hydration heat. This is because of the increased tensile strength that is large enough to sustain the thermally induced-stress.

Properties of a Thermosetting Epoxy Composite : Effect of Isothermal Physical Aging (에폭시 열경화 복차재료의 성질 : 등온물리시효의 효과)

  • 이종근;윤성호
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.359-366
    • /
    • 2001
  • Isothermal physical aging of a glass fiber/epoxy composite was examined at different aging temperatures ($T_a$) and degrees of conversion (monitored by the glass transition temperature, $T_g$) by means of the TBA torsion pendulum technique. The range of aging temperature was from 10 to $130^{\circ}C$ : the conversion was systematically changed from $T_g$=$76^{\circ}C$ to $T_g$=$177^{\circ}C$ (fully crosslinked). The effect of isothermal physical aging was manifested as perturbations of the modulus and mechanical loss vs. temperature in the vicinity of $T_a$ for all conversions. The rate of isothermal physical aging determined from the change of modulus with aging time at fixed aging temperature decreased and then increased with increasing conversion below T$_{a}$=9$0^{\circ}C$. There exists a superposition in aging rate vs. ($T_g$ -$T_a$) by shifting horizontally and vertically. This implies that the physical aging process is independent of the change of chemical structure as conversion proceeds. It has been found that water absorbed at the aging temperature below $70^{\circ}C$ during isothermal physical aging lowers the apparent aging rate. It is due to the absorbed water molecules forming strong polar interactions with hydroxyl group on network chain and reducing the segmental mobility during the physical aging.g.

  • PDF

Thermal Stability and Cure Behavior of Waterborne Phenol-Formaldehyde Resin (수용성 페놀-포름알데히드 수지의 열안정성 및 경화거동)

  • Yoon, Sung Bong;Kim, Jin Woo;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.7 no.1
    • /
    • pp.16-22
    • /
    • 2006
  • In this work, the effect of cure temperature and time on the thermal stability and the exothermic cure reaction peak of a waterborne resol-type phenol-formaldehyde resin, which may be used for preparing phenolic sheet molding compounds (SMC), has been investigated using a thermogravimetric analyzer and a differential scanning calorimeter. The weight loss of waterborne phenol-formaldehyde resin was mainly occurred at three temperature stages: near $200^{\circ}C,\;400^{\circ}C$, and $500^{\circ}C$. The carbon yield at $750^{\circ}C$ for the cured resin was about 62%~65%. Their thermal stability increased with increasing cure temperature and time. Upon cure, the exothermic reaction was taken placed in the range of $120^{\circ}C{\sim}190^{\circ}C$ and the maximum peak was found in between $165^{\circ}C$ and $170^{\circ}C$. The shape and the maximum of the exothermic curves depended on the given cure temperature and time. To remove $H_2O$ and volatile components, the uncured resin needed a heat-treatment at $100^{\circ}C$ for 60 min at least prior to cure or molding. Curing at $130^{\circ}C$ for 120 min made the exothermic peak of waterborne phenol-formaldehyde resin completely disappeared. And, post-curing at $180^{\circ}C$ for 60 min further improved the thermal stability of the cured resin.

  • PDF

Mechanical Properties of Low Temperature and Fast Cure Epoxy with Various Mercaptans (Mercaptan 경화제에 의한 저온속경화 에폭시의 열적 기계적 물성)

  • Kim, Won Young;Eom, Se Yeon;Seo, Sang Bum;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.557-562
    • /
    • 2013
  • The thermal expansion and mechanical properties of diglycidyl ether of bisphenol A (DGEBA) with mercaptan hardeners were studied by a comparative method with an amine-adduct type hardener. Thermal expansion and dynamic mechanical properties were measured by thermo mechanical analysis (TMA) and dynamic mechanical ananlysis (DMA), respectively. The $T_g$ and the coefficient of thermal expansion (CTE) of epoxy/amine-adduct type hardener system were $82.6^{\circ}C$ and 71.2 $ppm/^{\circ}C$, respectively. As the number of -SH functional group of mercaptan hardener increased, the $T_g$ rapidly decreased and gradually increased up to ca. $80^{\circ}C$ and the CTE under the $T_g$ rapidly increased to ca. 200 $ppm/^{\circ}C$ from 80 $ppm/^{\circ}C$ and decreased to ca. 100 $ppm/^{\circ}C$. The crosslinking density of epoxy with amine-adduct type hardener was ca.1.5 $mol/cm^3$, while that of epoxy with mercaptan hardeners increased from 1.0 to 1.7 $mol/cm^3$, as the number of -SH functional group increased. The storage modulus can increase up to 2700MPa at $30^{\circ}C$.