• Title/Summary/Keyword: 온간 단조

Search Result 40, Processing Time 0.026 seconds

Design of a Multi-Step Warm Heading Process for Subminiature Screws (초소형 스크류 온간 다단 헤딩공정 연구)

  • Jang, Yeon Hui;Jeong, Jin Hwan;Jang, Myung Guen;Hong, Jae-Keun;Kim, Jong-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.83-87
    • /
    • 2017
  • A multi-step warm forging process for subminiature screws is investigated. Due to the low formability of Titanium alloys, bit forming of Titanium screws is difficult by cold forging. In order to overcome this low formability of Titanium alloys, two candidate processes, i.e., multi-step forging and warm forging are introduced. First, a multi-step (two-step) forging process is investigated. The punch shape and stroke of forging during the first step is designed via various analyses. Finally, the bit formability is investigated at different forging temperatures. Analyses are carried out for two-step forging at various temperatures and the formability under these thermal conditions is compared.

A Study on Constitutive Equations for Warm and Hot Forging (온, 열간 단조의 구성방정식에 관한 연구)

  • 강종훈;박인우;제진수;강성수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.75-81
    • /
    • 1998
  • Simulations of warm and hot forming processes need reliable expressions of flow stress at high temperatures. To get flow stress of the materials usually tension, compression and torsion tests are conducted. In this study, hot compression tests were adopted to get flow stress of medium carbon steel. Experiments have been conducted under both isothermal, near constant strain rate in the temperature ranges 650~100$0^{\circ}C$. Phase transformation takes place by temperature changes for steels in hot and warm forging stage. So Constitutive equation are formulated as the function of strain, strain rate and temperature for isothermal conditions and phase transformation.

  • PDF

Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke (자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석)

  • Seong, S.G.;Kim, K.H.;Lee, Y.S.;Lee, S.Y.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.

The Improvement of Bearing-Race Forming Process Using UBET Analysis (베어링레이스의 온간성형에서 UBET 해석에 의한 공정개선 및 유동구속조건의 향상)

  • Kim, Young-Ho;Bae, Won-Byong;Park, Jae-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.92-100
    • /
    • 1997
  • An upper-bound elemental technique (UBET) analysis is carried out to improve the material flow and to reduce the load of bearing-race forming process. The UBET analysis, which adapts the advantages of stream function and finite element method, is useful for predicting the profile of complex geometric bound- ary. From the UBET analysis, the forming load, the velocity distribution and the stream line of the deformed billet are determined by minimizing the total power consumption with respect to chosen parameters. The results of present UBET analysis are better than those of previous UBET analysis. Experiments have been carried out with model material plasticine billets at room temperature. The theoretical predictions for forming load and flow pattern(stream line) are in good agreement with the experimental results.

  • PDF

Intelligent High-Precision Warm Forging Process (지능형 고정밀 온간단조 기술)

  • Lee J. Y;Bae M. H.;Jeong S. C.;Seo S. Y.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.321-325
    • /
    • 2001
  • This paper describes the basic structure of high-precision warm forging process for ball joint socket. If this research is successfully finished, We expect that productivity improvement, reduction of material cost and machining process, and cost down than conventional warm forging process.

  • PDF

A Study on Die Wear Model considering Thermal Softening(II) -Application of Suggested Wear Model (열연화를 고려한 금형마멸모델에 관한 연구(II) -마멸모델의 적용)

  • Kang, Jong-Hun;Park, In-Woo;Jae, Jin-Soo;Kang, Seong-Soo
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.282-290
    • /
    • 1998
  • In bulk metal forming processes prediction of tool life is very important for saving production cost and achieving good material properties. Generally the service life of tools in metal forming process is limited to a large extent by wear, fracture and plastic deformation of tools. In case of hot and warm forging processes tool life depends on wear over 70%. In this study finite element analyses are con-ducted to warm and hot forging by adopting suggested wear model. By comparison of simulation and eal profile of die suggested wear model. By comparison of simulation and real profile of die suggested model is verified.

  • PDF

A Study on Die Wear Model considering Thermal Softening(I) -Construction of Wear Model (열연화를 고려한 금형마멸모델에 관한 연구(I)-마멸모델의 정립)

  • Kang, Jong-Hun;Park, In-Woo;Jae, Jin-Soo;Kang, Seong-Soo
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.274-281
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In elevated temperature forming processes wear is the predominant factor for tool operating life. To predict tool life by wear Achard's model is generally applied. Usually hardness of die is considered to be a function of temperature. But hardness of die is a function of not only tem-perature but also operating time of die. To consider softening of die by repeated operation it is necessary to express hardness of die by a function of a function of temperature and time. By experiment of reheating of die softening curve was obtained and applied to suggest modified Archard's Model in which hardness is a function of main tempering curve.

  • PDF

Manufacturing Technology of Titanium Alloy Bolts Using Warm Forging Process (온간 단조공정을 이용한 타이타늄합금 볼트 제조기술)

  • Lim, S.G.;Kim, J.H.;Kim, J.H.;Lee, C.H.;Bong, J.K.;Yeom, J.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.80-81
    • /
    • 2009
  • Ti-6Al-4V alloy has been widely used for aerospace and power generation applications because of low density and attractive mechanical and corrosion resistant properties. However, the titanium alloy bolt is generally manufactured by cutting and rolling because of their poor workability. In order to achieve the mass production of titanium alloy bolts, it needs to be solved some manufacturing problems such as the sticking between workpiece and dies, the formation of the forming defects during the forging and so on. In this study, the manufacturing technology of titanium alloy bolts using warm forging process was introduced. The aim of present work is to develop a warm forging technology for high strength Ti-6Al-4V bolts.

  • PDF

Warm Forging of a Bevel Gear on the Lubricanting Characteristics of Lubricants (윤활제의 윤활특성에 대한 베벨기어의 온간단조 성형)

  • Park T. S.;Jung D. J.;Kim D. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.244-247
    • /
    • 2001
  • Lubricanting characteristics in the warm forging have influence on forgeability of products. but Research on deformation characteristic of warm forging on the lubricant and lubricating method lack. This paper deform a bevel gear by warm forging and evaluate deformation loads and quality of products by each lubricants and lubricating method using oil-based lubricants(Soy, Oildag) and water-based lubricants(Deltaforge $\#31$, Renite S-26-X, Deltaglaze $\#151$). In conclusion, the less a deformation load by lubricants the more improvement a quality of product in manufacture of a bevel gear and water-based lubricants in the warm forging reduce a deformation load and improve a quality of products. Especially, Deltaforge $\31$ have excellent characteristic in the warm forging.

  • PDF

Evaluation of Friction Shear Factor By the Lubricating Methods in Warm Forging (온간 단조에서 윤활 분사 방법에 따른 마찰 상수값의 평가)

  • 정덕진;김동진;김병민
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.319-328
    • /
    • 2001
  • Quantitative evaluation of the tribological conditions at the tool-workpiece interface in metal forming is usually accomplished by the ring compression test. This paper describes an experimental investigation into friction factor under warm forming conditions according to the lubricants and the lubricating methods using the ring compression test. Four different lubricants, two water based graphite and two oil based graphite lubricants, and three different lubricating methods were applied in the experiments. Calibration curves with the friction shear factor were obtained using FEM analysis and verified by the experimental results. The influence of lubricant and lubricating methods on friction are discussed. In the ring compression test, the lower friction factor got to spray the oil based lubricant on die and billet in warm forging temperature.

  • PDF