• Title/Summary/Keyword: 옥외온열환경

Search Result 11, Processing Time 0.029 seconds

해양치유 옥외활동을 위한 기후환경 조건에 관한 연구

  • Im, Deok-Min;Lee, Han-Seok;Gang, Yeong-Hun;Do, Geun-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.292-293
    • /
    • 2018
  • 여가생활과 건강에 대한 관심이 증대함에 따라 웰니스와 휴양과 관련한 컨텐츠가 요구되면서 산림치유, 해양치유와 같은 헬스 투어리즘에 대한 관심이 높아지고 있다. 산과 바다를 모두 갖고 있는 우리나라의 경우 치유산업의 발전가능성이 충분하고 치유자원 발굴, 효능에 관련된 연구도 진행되고 있다. 해양치유시설은 프로그램에 맞게 제어 가능한 실내에 비해 옥외활동에는 가능한 시간, 기후가 한정되어 있으며 지역특성에 따라 달리 적용되어야 함에도 불구하고 아직 명확한 기준이 미비하다. 이에 본 연구는 해양치유 옥외활동에 적합한 기후환경 가이드라인 개발을 위해 온열환경, 풍환경, 공기환경 및 체감온도, 불쾌지수와 같은 생활지수와 같은 항목을 정리하고 해당 데이터를 활용하여 옥외활동을 할 수 있는 시간, 기후 등 판단기준을 작성하고자 한다.

  • PDF

Development and application of an assessment tool for outdoor thermal environment (옥외 온열환경 평가를 위한 복사 연성 CFD 해석기법의 개요)

  • Lim, Jong-Yeon;Chang, Hyun-Jae;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.45-55
    • /
    • 2009
  • Deterioration of the outdoor thermal environment in urban areas has become worse and worse due to the urbanization and overpopulation, etc. Most of existing researches about thermal environment are focused on the indoor environment in which the radiation heat exchange is relatively constant. However, the outdoor thermal environment is changed with time passages, because the thermal environment is highly effected by solar radiation. Thus, to simulate the outdoor thermal environment with accuracy, the solar radiation calculation should be considered, and the radiation heat exchange between building surface and ground surface should be calculated. The purpose of this study is to develop the simulator that can be possible to evaluate the outdoor thermal environment and pedestrian thermal comfort. In this paper, a new method which is coupled with convective heat transfer simulation and radiative heat transfer simulation will be proposed. And the coupled simulation method will be described through case study for outdoor thermal environment. From the results of simulation, the coupled simulation proposed in this study can assess the outdoor thermal environment with accuracy.

Study on assessment of outdoor thermal environment with coupled simulation of convection and radiation (대류.복사 연성시뮬레이션을 통한 옥외 온열환경 평가 기법)

  • Ryu, Min-Kyung;Lim, Jong-Yeon;Hwang, Hyo-Keun;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.565-572
    • /
    • 2009
  • Deterioration of the outdoor thermal environment in urban areas such as heat island has become worse due to urbanization and overpopulation, etc. In this study, a new method which is coupled simulation of convection and radiation to evaluate outdoor thermal environment in urban area will be proposed. Because the solar radiation affects on outdoor thermal environment massively, therefore the radiation calculation is very important in outdoor thermal environment prediction. The coupled simulation proposed in this study can assess the outdoor thermal environment with accurate.

  • PDF

Development of an assessment tool for outdoor thermal environment (옥외 온열환경 평가시뮬레이션 기법의 개발)

  • Jee, Yong-Seung;Hwang, Hyo-Keun;Lim, Jong-Yeon;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.38-43
    • /
    • 2009
  • Since most of the existing CFD simulation about thermal environment was limited as indoor environment, it is not appropriate to adopt the same method for external thermal environment, because the solar radiation highly affect the outdoor thermal environment. Thus, in case of assessing the outdoor thermal environment, the radiation calculation is very important. In this study, as a new method to evaluate the outdoor thermal environment, coupled simulation of convection and radiation will be proposed.

  • PDF

스키웨어 착의시의 온열생리학적 특성

  • 홍현실;성수광
    • Proceedings of the ESK Conference
    • /
    • 1997.10a
    • /
    • pp.35-39
    • /
    • 1997
  • 스키는 겨울철에 하는 옥외 스포츠로서, 때로는 -30 .deg. C 정도의 저온이나 강풍이 부는 한냉 환경하에서 행하여지는 경우도 있다. 이러한 한냉환경은 신체기능을 저하시켜서 불쾌감을 증가시키므로 의복의 중요성이 더욱 강조된다. 인간과 환경 사이에 놓여 있는 스키웨어는 그 시대의 세련된 패션성이 요구될 뿐만 아니라 운동기능성, 안전성, 내구성 그리고 쾌적성을 구비하지 않으면 안된다. 따라서 환경이 인체에 미치는 영향이나 인간의 생리적 메커니즘을 인식하므로서 비로서 쾌적한 스키웨어를 만들 수 있는 것이다. 다양한 형태의 삶을 추구하는 현대인들의 관심은 점차 여가 시간의 건전한 활용 및 스포츠에 집중 되고 있다. 이러한 사회적인 경향에 발 맞추어 신소재의 스키웨어의 개발이 활발히 진행되고 있다. 예컨데 태양 광선을 흡수하는 세라믹 투입의 신소재의 개발과 체내에서 방출하는 열을 가능한 발산하지 않는, 두 가 지 기능을 합한 축열보온 소재의 스키웨어와 또 탁월한 방수. 방풍의 효과와 운동시 발생되는 수분. 열 배출 을 위한 투습의 능력이 있고 보온의 효과가 매우 높은 힐스포(HEALSPO) 코팅 소재를 사용한 스키웨어도 개발 되고 있다. 그리고 보온성과 심리적 만족감을 위한 원피스, 투피스, 쓰리피스 타입의 디자인 개발도 진행되 고 있다. 본 연구에서는 한냉하 운동시의 축열보온 소재 및 힐스포 소재와 같은 특수소재 스키웨어가 인 체에 미치는 영향을 다른 일반 소재와 비교 고찰하고, 스키웨어의 디자인에 대한 보온성의 효과를 검토하기 위하여, 저온환경에서의 피험자의 온열생리학적 반응을 측정하였다.한 신장/근력 팀의 경우보다 높은 에너지 소비량과 심박수를 보였다.찰한 결과, 세포독성 및 염색체 이상을 유발하지 않았다. 또한 동물약품으로 사용되는 치료용량 및 투약방법에 근거하여 10mg/kg 및 5, 2.5mg/kg을 1일 1회씩 4회 투여한 군에서도 암수에 상관없이 전 농도 군에서 염색체이상을 나타내지 않아 유전독성을 나타내지 않음을 관찰하였다. 특히 vitamin C와 E의 병용투여는 상승적으로 적용하여 간세포손상을 더욱 억제시킴을 알 수 있었다.mance and on TFP(Total Factor Productivity) growth which is a pure measure of firm performance. To utilize the advantage of panel data, FEM(Fixed Effect Model) and REM(Random Effect Model) were used. The empirical result shows that the entropy index as a measurement of inter-business relatedness is not significant but technological relatedness index is significant. OLS estimates on pooled data were considerably different from FEM or REM estimates on panel data. By introducing interaction effect among the three variables for business

  • PDF

The Influence of Landscape Pavements on the WBGT of Outdoor Spaces without Ventilation or Shade at Summer Midday (조경포장이 옥외공간의 온열쾌적성지수(WBGT)에 미치는 영향 - 통풍과 차광이 배제된 하절기 주간의 조건에서 -)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • The purpose of the study was to evaluate the influence of landscaping pavements on WBGT(Wet-Bulb Globe Temperature) of outdoor spaces that lack ventilation and shade at summer midday. The relative humidity(RH), dry-bulb temperature(DT) and globe temperature(GT) were recorded every minute from June to October 2009 at a height of 1.2m above ten experimental beds with different pavements, by a measuring system consisting of an electric humidity sensor(GHM-15), resistance temperature detector(RTD, Pt-100), standard black globe(${\phi} 150mm$) and data acquisition systems(National Instrument's Labview and Compact FieldPoint). Additionally, the surface dry-bulb temperatures also were recorded and compared. The area of each experimental bed was 1.5m(W)${\times}$2.0m(L) and ten different kinds of pavement were used including grass, grass+cubic stone, grass+porous brick, brick, stone panels, cubic stone, interlocking blocks, clay brick, naked soil, gravel and concrete. To prevent interference from ventilation, a 1.5m height cubic steel frame was established around each bed and each vertical side of the frame was covered with transparent polyethylene film. Based on the records of the hottest period from noon to 3 PM on 26 days with a peak dry-bulb temperature over $30^{\circ}C$ at natural condition, the wet-bulb temperature(WT) and WBGT were calculated and compared. The major findings were as follows: 1. The average surface DT was $40.1^{\circ}C$, which is $9^{\circ}C$ higher than that of the natural condition. The surface DT of the pavements with grass were higher than those of concrete and interlocking block. The peak DT of the surface almost every pavement rose to above $50^{\circ}C$ during the hottest time. 2. The averages of DT, WT and GT were $40.1^{\circ}C$, $27.5^{\circ}C$ and $49.1^{\circ}C$, and the peak values rose to $48.1^{\circ}C$, $45.8^{\circ}C$ and $59.5^{\circ}C$, respectively. In spite of slight differences that resulted according to pavements, no coherent differentiating factor could be found. 3. The average WBGT of grass was the highest at $34.3^{\circ}C$ while the others were similar in the range of around $33{\pm}1^{\circ}C$. Meanwhile, the peak WBGT was highest with stone panel at $47.9^{\circ}C$. Though there were some differences according to pavements, and while grass seemed to be worst in terms of WBGT, it seems difficult to say ablolutely that grass was the worst because the measurement was conducted without ventilation and shade during summer daytime hours only, which had temperatures that rose to a dangerous degree(above $45^{\circ}C$ WBGT), withering the grass during the hottest period. The average WBGT resulted also showed that the thermal environment of the pavement without ventilation and shade were at an intolerable level for humans regardless of the pavement type. In summary, the results of this study show that ventilation and shade are more important factor than pavement type in terms of outdoor thermal comfort in summer daylight hours.

Evaluation of Heat Stress and Comparison of Heat Stress Indices in Outdoor Work (옥외 작업에서의 온열환경 평가 및 온열지수 비교)

  • Kim, Yangho;Oh, Inbo;Lee, Jiho;Kim, Jaehoon;Chung, In-Sung;Lim, Hak-Jae;Park, Jung-Keun;Park, Jungsun
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • Objectives: The objective of this study was to assess heat stress, compare heat stress indices, and evaluate the usefulness of wet bulb globe temperature (WBGT) among outdoor workers exposed to heat during the summer season. Methods: WBGT, dry temperature, and heat index were measured using WBGT measurers (QUESTemp 32 model and QUESTemp 34 model, QUEST, WI, USA) by industrial hygienists from August 27 to September 16, 2015. Heat stress indices were measured at the workplaces of a shipbuilder in Ulsan and a construction site in Daegu. The dry temperature observed by the Automated Synoptic Observing System (ASOS) of the Korea Meteorological Administration was also compared. Results: Dry temperature measured by WBGT is different from that by ASOS. The temperature obtained from ASOS was less than $33^{\circ}C$, above which point a heat wave is forecast by the Korea Meteorological Administration. A heat index above $32.8^{\circ}C$ as a moderate risk was not observed during measurement. WBGT was consistently higher than $22^{\circ}C$, above which the risk of heat-related illness is increased in unacclimated workers involved in work with a high metabolic rate. WBGT was sometimes higher than $28^{\circ}C$, above which the risk of heat-related illness is increased in acclimated workers involved in work with a moderate metabolic rate in September. Conclusion: According to the measurement of heat stress indices, WBGT was more sensitive than heat index and temperature. Thus, general measures to prevent heat-related diseases should be implemented in workplaces during the summer season according to WBGT.

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

The Influence of the Landscaping Shade Materials' Porosity on the Mean Radiant Temperature(MRT) of Summer Outdoors (조경용 차양 재료의 공극률이 하절기 옥외공간 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.60-67
    • /
    • 2017
  • The purpose of this study was to evaluate the influence of landscaping shade materials' porosity on the Mean Radiant Temperature (MRT) of summer outdoors. The MRTs were measured under seven different types of black membranes with holes of 8mm diameter at different intervals applied on the top of wooden boxes, and compared with those of four additional control plots with or without shade and lateral boxes. The applied porosities were 0.5, 1, 2, 4, 8, 16%, and 32%, and three groups of three shades were compared sequentially from August 13 to September 8, 2016. The MRTs under the shade without lateral block, no shade with lateral block, and shade with lateral block were $33.08^{\circ}C$, $45.80^{\circ}C$, and $42.3^{\circ}C$, respectively, while that of no-shaded no-lateral screen was $44.26^{\circ}C$, based on records from 11:00 AM to 3:00 PM on the days with a peak globe temperature higher than $30^{\circ}C$. An ANCOVA analysis showed that the MRTs under the shades with 0.5, 1, 2, 4, 8, 16%, and 32% porosities were calculated as 43.40, 43.10, 41.49, 40.43, 39.61, $37.91^{\circ}C$, and $38.12^{\circ}C$, respectively, while that in the no shaded control box was $45.8^{\circ}C$. The curve fitted between MRTs and the porosity showed a U-shaped quadratic function with the minimum MRT at 16% practically or 22.5% statistically.

The Effects of Pergola Wisteria floribunda's LAI on Thermal Environment (그늘시렁 Wisteria floribunda의 엽면적지수가 온열환경에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.115-125
    • /
    • 2017
  • This study was to investigate the user's thermal environments under the pergola($L\;7,200{\times}W\;4,200{\times}H\;2,700mn$) covered with Wisteria floribunda(Willd.) DC. according to the variation of leaf area index(LAI). We carried out detailed measurements with two human-biometeorological stations on a popular square Jinju, Korea($N35^{\circ}10^{\prime}59.8^{{\prime}{\prime}}$, $E\;128^{\circ}05^{\prime}32.0^{{\prime}{\prime}}$, elevation: 38m). One of the stations stood under a pergola, while the other in the sun. The measurement spots were instrumented with microclimate monitoring stations to continuously measure air temperature and relative humidity, wind speed, shortwave and longwave radiation from the six cardinal directions at the height of 0.6m so as to calculate the Universal Thermal Climate Index(UTCI) from $9^{th}$ April to $27^{th}$ September 2017. The LAI was measured using the LAI-2200C Plant Canopy Analyzer. The analysis results of 18 day's 1 minute term human-biometeorological data absorbed by a man in sitting position from 10am to 4pm showed the following. During the whole observation period, daily average air temperatures under the pergola were respectively $0.7{\sim}2.3^{\circ}C$ lower compared with those in the sun, daily average wind speed and relative humidity under the pergola were respectively 0.17~0.38m/s and 0.4~3.1% higher compared with those in the sun. There was significant relationship in LAI, Julian day number and were expressed in the equation $y=-0.0004x^2+0.1719x-11.765(R^2=0.9897)$. The average $T_{mrt}$ under the pergola were $11.9{\sim}25.4^{\circ}C$ lower and maximum ${\Delta}T_{mrt}$ under the pergola were $24.1{\sim}30.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average $T_{mrt}$ compared with those in the sun and was expressed in the equation $y=0.0678{\ln}(x)+0.3036(R^2=0.9454)$. The average UTCI under the pergola were $4.1{\sim}8.3^{\circ}C$ lower and maximum ${\Delta}UTCI$ under the pergola were $7.8{\sim}10.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average UTCI compared with those in the sun and were expressed in the equation $y=0.0322{\ln}(x)+0.1538(R^2=0.8946)$. The shading by the pergola covered with vines was very effective for reducing daytime UTCI absorbed by a man in sitting position at summer largely through a reduction in mean radiant temperature from sun protection, lowering thermal stress from very strong(UTCI >$38^{\circ}C$) and strong(UTCI >$32^{\circ}C$) down to strong(UTCI >$32^{\circ}C$) and moderate(UTCI >$26^{\circ}C$). Therefore the pergola covered with vines used for shading outdoor spaces is essential to mitigate heat stress and can create better human thermal comfort especially in cities during summer. But the thermal environments under the pergola covered with vines during the heat wave supposed to user "very strong heat stress(UTCI>$38^{\circ}C$)". Therefore users must restrain themselves from outdoor activities during the heat waves.