본 연구에서는 오픈 도메인에서 동작할 수 있는 질의 응답 시스템(Open-domain Question Answer ing System)을 구현하고 영어권 TREC에 참가한 결과를 기술하였다. 정답 유형을 18개의 상위 노드를 갖는 계층구조로 분류하였고, 질문 처리에서는 LSP(Lexico-Semantic Pattern)으로 표현된 문법을 사용하여 질문의 정답 유형을 결정하고, lemma 형태와 WordNet 의미, stem 형태의 3가지 유형의 키워드로 구성된 질의를 생성한다. 이 질의를 바탕으로, 패시지 선택에서는 문서검색 엔진에 의해 검색된 문서들을 문장단위로 나눠 정수를 계산하고, 어휘체인(Lexical Chain)을 고려하여 인접한 문장을 결합하여 패시지를 구성하고 순위를 결정한다. 상위 랭크의 패시지를 대상으로, 정답 처리에서는 질문의 정답 유형에 따라 품사와 어휘, 의미 정보로 기술된 LSP 매칭과 AAO (Abbreviation-Appositive-Definition) 처리를 통해 정답을 추출하고 정수를 계산하여 순위를 결정한다. 구현된 시스템의 성능을 평가하기 위해 TREC10 QA Track의 main task의 질문들 중, 200개의 질문에 대해 TRIC 방식으로 자체 평가를 한 결과, MRR(Mean Reciprocal Rank)은 0.341로 TREC9의 상위 시스템들과 견줄 만한 성능을 보였다.
지식 그래프 기반의 질문 응답 문제는 자연어 질문에 대한 이해뿐만 아니라, 기반이 되는 지식 그래프상에서 올바른 답변을 찾기 위한 효과적인 추론 능력을 요구한다. 본 논문에서는 다중 홉 추론을 요구하는 복잡한 자연어 질문에 대해 연관 지식 그래프 위에서 답변 추론을 효과적으로 수행할 수 있는 심층 신경망 모델을 제안한다. 제안 모델에서는 지식 그래프상의 추론 과정에서 추른 경로를 명확히 하기 위한 노드의 양방향 특정 전파와 이웃 노드들 간의 맥락 정보까지 각 노드의 특정값에 반영할 수 있는, 표현력이 풍부한 쌍 선형 그래프 신경망 (BGNN)을 이용한다. 본 논문에서는 오픈 도메인의 지식 베이스 Freebase와 자연어 질문 응답 데이터 집합 WebQuestionsSP를 이용한 실험들을 통해, 제안 모델의 효과와 우수성을 확인하였다.
최근 거대언어모델(LLM)이 기계 번역 및 기계 독해를 포함한 다양한 문제들에서 높은 성능을 보이고 있다. 특히 프롬프트 기반의 대규모 언어 모델은 사고사슬 방식으로 적절한 프롬프팅을 통해 원하는 형식의 답변을 생성할 수 있으며 자연어 추론 단계에서도 높은 정확도를 보여주고 있다. 그러나 근본적으로 LLM의 매개변수에 질문에 관련된 지식이 없거나 최신 정보로 업데이트 되지 않은 경우 추론이 어렵다. 이를 해결하기 위해, 본 연구는 검색문서와 생성모델의 상호작용을 통해 답변하는 한국어 질의응답 모델을 제안한다. 검색이 어려운 경우 생성형 모델을 통해 질문과 관련된 문장을 생성하며, 이는 다시 검색모델과 추론 과정에서 활용된다. 추가로 "판단불가"라는 프롬프팅을 통해 모델이 답변할 수 없는 경우를 스스로 판단하게 한다. 본 연구결과에서 GPT3를 활용한 사고사슬 모델이 63.4의 F1 점수를 보여주며 생성형 모델과 검색모델의 융합이 적절한 프롬프팅을 통해 오픈-도메인 질의응답에서 성능의 향상을 보여준다.
질의응답 시스템은 사용자의 질문에 대한 답을 찾아주는 시스템으로, 기존의 검색엔진이 사용자의 질의에 대해 관련된 문서의 링크만을 찾아주는 반면 질문에 대한 최종적인 답을 찾아준다는 차이점이 있다. 특정 분야에 국한되지 않고 다양한 질문을 처리해주는 오픈 도메인 질의응답 시스템에 필요한 연구들이 최근 자연어 처리, 인공지능, 데이터 마이닝 등 학계의 다양한 분야들에서 뜨거운 관심을 받고 있다. 하지만 관련 연구에서는 학습 데이터에는 없었던 단어들이 질문에 대한 정확한 답과 유사한 오답을 구별해내는데 결정적인 역할을 할 수 있음에도, 이러한 처음 보는 단어들을 모두 단일 토큰으로 치환해버리는 문제가 있다. 본 논문에서는 문맥 정보를 통해 이러한 모르는 단어에 대한 벡터를 계산하는 방법을 제안한다. 그리고 역문헌빈도 가중치를 활용하여 문맥정보를 더 효율적으로 처리하는 모델을 제안한다. 또한 풍부한 실험을 통해 질의응답 시스템의 모델 학습 속도 및 정확성이 기존 연구에 비해 향상됨을 확인하였다.
한국어 질의 응답의 입력 질문에 대한 예상 정답 유형을 단답형 또는 서술형으로 이진 분류하는 방법에 대해 서술한다. 일반적인 개체명 인식으로 확인할 수 없는 질의 주제어의 화제성을 반영하기 위하여, 검색 엔진 쿼리를 빈도수로 분석한다. 분석된 질의 주제어 정보와 함께, 정답의 범위를 제약할 수 있는 속성 표현과 육하원칙 정보를 입력 자질로 사용한다. 기존 신경망 분류 모델과 비교한 실험에서, 추가 자질을 적용한 모델이 4% 정도 향상된 분류 성능을 보이는 것을 확인할 수 있었다.
본 논문에서는 인공지능이 생성하는 일상 대화의 품질 향상을 위해 상식 추론을 정의하고 설문을 통해 정량적, 정성적 분석을 진행하였다. 정량적 평가에서는 주어진 문장이 에게 학습시키기에 적합한가'라는 수용성 판단을 요청한 질문에서 40대 이상의 연령이 20, 30대와 유의미한 차이를 보였다. 정성적 평가에서는 '보편적 사실 여부'를 AI 발화 기준의 주요한 지표로 보았다. 이어서 '챗봇' 대화의 품질에 대한 설문을 실시했다. 이를 통해 일상 대화를 사용한 챗봇의 대화 품질을 높이기 위해서는 먼저, 질문의 요구에 적절한 정보와 공감을 제공해야 하고 두 번째로 공감의 정도가 챗봇의 특성에 맞는 응답이어야 하며 세 번째로 대화의 차례에 따라 담화의 규칙을 지키면서 대화가 진행되어야 한다는 결론을 얻을 수 있었다. 이 세 가지 요건이 통합적으로 적용된 담화 설계를 통해 완전히 인공지능스러운 대화가 가능할 것으로 여겨진다.
오픈 도메인 질의응답 (ODQA, Open-Domain Question Answering)은 주어진 질문에 대한 답을 찾는 작업으로 일반적으로 질문과 관련 있는 지식을 검색 모델(Retrieval)을 통해 찾는 단계와, 찾은 지식에서 문서의 정답을 독해 모델(Reader)을 이용하여 찾는 단계로 구성되어 있다. 본 논문은 기존의 DPR(Dense Passage Retrieval)을 이용한 복수의 검색 모델(Retrieval)만을 계층적으로 사용하여 독해 모델(Reader)을 사용하지 않고 정답 문장을 찾는 방법과 정답 문장을 찾는 데 특화된 검색 모델 학습을 위한 유효한 성능 향상을 보이는 Hard Negative Sampling 기법을 제안한다. 해당 제안기법을 적용한 결과, 동일 조건에서 학습된 검색 - 독해(Retrieval-Reader) 구조의 베이스라인 모델보다 EM에서 12%, F1에서 10%의 성능 향상을 보였다.
자연어처리 분야 중 질의응답 태스크는 전통적으로 많은 연구가 이뤄지고 있는 분야이며, 최근 밀집 벡터를 사용한 리트리버(Dense Retriever)가 성공함에 따라 위키피디아와 같은 방대한 정보를 활용하여 답변하는 오픈 도메인 QA(Open-domain Question Answering) 연구가 활발하게 진행되고 있다. 대표적인 검색 모델인 DPR(Dense Passage Retriever)은 바이 인코더(Bi-encoder) 구조의 리트리버로서, BERT 모델 기반의 질의 인코더(Query Encoder) 및 문단 인코더(Passage Encoder)를 통해 임베딩한 벡터 간의 유사도를 비교하여 문서를 검색한다. 하지만, BERT와 같이 엔티티(Entity) 정보에 대해 추가적인 학습을 하지 않은 언어모델을 기반으로 한 리트리버는 엔티티 정보가 중요한 질문에 대한 답변 성능이 저조하다. 본 논문에서는 엔티티 중심의 질문에 대한 답변 성능 향상을 위해, 엔티티를 잘 이해할 수 있는 LUKE 모델 기반의 리트리버를 제안한다. KorQuAD 1.0 데이터셋을 활용하여 한국어 리트리버의 학습 데이터셋을 구축하고, 모델별 리트리버의 검색 성능을 비교하여 제안하는 방법의 성능 향상을 입증한다.
신경망 기반의 검색 모델이 활발히 연구됨에 따라 효과적인 대조학습을 위한 다양한 네거티브 샘플링 방법이 제안되고 있다. 대표적으로, ANN전략은 하드 네거티브 샘플링 방법으로 질문에 대해 검색된 후보 문서들 중에서 정답 문서를 제외한 상위 후보 문서를 네거티브로 사용하여 검색 모델의 성능을 효과적으로 개선시킨다. 하지만 질문에 부착된 정답 문서를 통해 후보 문서를 네거티브로 구분하기 때문에 실제로 정답을 유추할 수 있는 후보 문서임에도 불구하고 네거티브로 분류되어 대조학습을 진행할 수 있다는 문제점이 있다. 이러한 가짜 네거티브 문제(False Negative Problem)는 학습과정에서 검색 모델을 혼란스럽게 하며 성능을 감소시킨다. 본 논문에서는 False Negative Problem를 분석하고 이를 완화시키기 위해 가짜 네거티브 분류기(False Negative Classifier)를 소개한다. 실험은 오픈 도메인 질의 응답 데이터셋인 Natural Question에서 진행되었으며 실제 False Negative를 확인하고 이를 판별하여 기존 성능보다 더 높은 성능을 얻을 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.