Proceedings of the Korean Institute of Intelligent Systems Conference
/
1997.10a
/
pp.287-290
/
1997
신경회로망은 높은 정확도의 학습 결과를 제시하는 장점을 가지고 있어서 패턴 인식을 포함한 여러 분야에서 널리 사용되어지고 있다. 그러나 신경회로망의 설계에 있어 최적의 뉴런과 층의 개수, 그리고 그 연결 등의 기하학적 해답을 제시하기가 어렵고, 서은이 우수하다고 알려진 역전파 학습 알고리즘도 오차가 없는 완벽한 학습 결과를 제시하지 못하며, 상당히 많은 학습 시간이 걸린다는 단점들을 가지고 있다. 이러한 단점들을 극복하기 위해 선형 신경회로망을 합성하는 새로운 방법을 제안하는데, 이진 함수 최소화(binary function minimization)과정을 거친 minimal-sum-of-product(MSP)를 통해서 이진 클래스 패턴(binary class pattem)을 표현 함으로써 오차가 없는 학습 결과를 얻을 수 있으며, 학습에 필요한 패턴과 학습에 걸리는 시간도 대폭 줄일수 있다. 본 논문에서는 유전자 알고리즘을 이용하여 선형 신경회로망을 합성하는 방법을 제안하며, 여러 가지 예제를 통해 제안한 방법의 우수성을 보인다.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.38
no.6
/
pp.26-37
/
2001
In order to improve the several problems of the general backpropagation, we propose a method using a fuzzy logic system for automatic tuning of the activation function gain in the backpropagation. First, we researched that the changing of the gain of sigmoid function is equivalent to changing the learning rate, the weights, and the biases. The inputs of the fuzzy logic system were the sensitivity of error respect to the last layer and the mean sensitivity of error respect to the hidden layer, and the output was the gain of the sigmoid function. In order to verify the effectiveness of the proposed method, we performed simulations on the parity problem, function approximation, and pattern recognition. The results show that the proposed method has considerably improved the performance compared to the general backpropagation.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
1994.10a
/
pp.121-125
/
1994
본 논문에서는 Hu에 의해 고안된 random 탐색법과 조합된 tabu 탐색법(radnom tabu 탐색법)을 결합계수를 구하는 학습 알고리즘으로 직접 사용하여 국소적 최적해에 수렴하는 것을 방지하고, 수렴정도를 개선하는 새로운 방법을 제안한다. 이 방법을 배타적 논리합 문제에 적용하여 역전파법 및 tabu 탐색법을 이용한 오차역전파법과 비교한다. 그리고, 각 파라메터가 오차함수의 수렴에 미치는 영향을 조사한다.
Journal of the Korean Institute of Telematics and Electronics S
/
v.36S
no.5
/
pp.70-77
/
1999
본 논문에서는 Wavelet을 이용한 위장 영상의 질환 부위 특징을 추출하여 질환 부위 패턴을 인식할 수 있는 알고리즘을 제안하였다. 전처리 과정으로서 위장 영상이 형태정보는 입력 영상을 DWT(Discrete wavelet transform)에 의해 4레벨 DWT 계수 행렬을 구하고 계수 행렬의 특징에 따라 저주파 계수 행렬로부터 저주파 특징 파라미터 32개, 수평 고주파 계수 행렬로부터 수평 고주파 특징 파라미터 16개, 수직 고주파 계수 행렬로부터 수직 고주파 특징 파라미터 16개, 그리고, 대각 고주파 계수 행렬로부터 대각 고주파 특징 파라미터 32개 등 모두 96개의 특징 파라미터를 추출한 후 각각의 특징 파라미터를 최대 값+0.5로 최소 값을 -0.5로 정규화 하여 신경회로망의 입력 벡터로 사용하였다. 위장 영상 패턴 인식을 위한 신경회로망은 교사 학습을 요구하는 다층 구조의 오차 역전파(Error back propagation)알고리즘으로 하였고 구조적 특성을 이용하여 입력층, 중간층, 출력층의 계층 구조로 설계하였다. 설계된 신경회로망의 학습은 학습계수를 0.2로 모우멘텀을 0.6으로 설정하여 출력층 최대오차가 0.01보다 작을 때까지 수행하였으며 약 8000회 정도 학습한 결과 설정값 보다 작은 결과를 얻었고 질환의 종류나 위치, 크기에 관계없이 100%의 인식률을 얻었다.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
1995.10a
/
pp.280-283
/
1995
계층형 신경회로망은 학습능력이나 비선형사상능력을 가지고 있고, 그 특징을 이용하여 패턴인식이나 동정 및 제어 등에의 적용이 시도되어 성과를 올리고 있다. 현재, 그 학습법으로 널리 이용되고 있는 것이 역전파학습법으로 최급 강하법이나 공액경사법 등의 최적화 방법이 적용되고 있지만, 학습에 많은 시간이 걸리는 점, 국소적 최적해(local minima)에 해의 수렴이 이루어져 오차가 충분히 작게 되지 않는 점 등이 문제점으로 지적되고 있다. 본 논문에서는 Hu에 의해 고안된 random 탐색법과 조합된 random tabu 탐색법으로 최적결합계수를 구하는 학습알고리즘으로, 국소적 최적해에 수렴하는 것을 방지하고, 수렴정도를 개선하는 새로운 방법을 이용하여 회전기계의 이상진동진단에 적용가능성을 검토하고 오차역전파법에 의한 진단결과와 비교검토한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.330-340
/
1998
자율주행 반송차가 주어진 경로를 따라 주행 할 때 주행면의 불균일성과 같은 외란요인과 자율반송차 시스템 자체의 비선형성 등으로 인하여 원치 않는 경로추종오차가 발생하게 되는데 본 연구에서는 이러한 경로추종오차를 최소화하기 위해서 신경회로망을 이용한 경로추종 오차 보상방법을 제안한다. 본 방법에서는 신경회로망을 통하여 조향각 보상량을 제공하므로써 경로추종오차를 보상한다. 신경망은 다층 퍼셉트론을 채용하였으며 역전파 알고리즘의 최급강하규칙(Gradient descent rule)을 이용하여 학습을 수행하였다. 본 제안에서는 학습오차를 경로추종오차로부터 정의하므로써 경로추종오차가 최소화되록 신경회로망을 학습시켰다. 제안된 방법의 타당성은 다양한 경로에 대한 모의실험 및 실제 실험을 통하여 검증하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.77-80
/
2003
신경망의 퍼셉트론 학습법에는 이진 또는 연속 활성화 함수가 사용된다. 초기 연결강도는 임의의 값으로 설정하며, 목표치와 실제 출력과의 차이를 이용하는 것이 주된 특징이다. 즉 구해진 오차는 학습률에 따라서 다음 단계의 연결강도에 영향을 주게 된다. 이런 경우 학습률이 너무 크면 수렴성을 보장할 수 없으며, 반대로 너무 작게 선정하면 학습이 매우 느리게 진행되는 단점이 발생한다. 이런 이유로 능동적인 학습률의 변화는 신경망의 퍼셉트론 학습법에 중요한 관건이 리며, 주어진 문제를 최적으로 학습을 위해서는 결국 상황에 따른 적절한 학습률 조정이 필요하다. 본 논문에서는 학습률 조정에 퍼지 모델을 적용하는 신경망 학습 방법을 제안하고자 한다. 제안한 방법에 의한 학습은 오차의 변화에 따라 학습률을 조정하는 방식을 사용하였고, 그 결과 연결강도를 능동적으로 변화시켜 효과적인 학습 결과를 얻었다. 학습률 변화는 'Sugeno 퍼지 모델'을 이용하여 구현하였다.
Journal of the Korean Institute of Telematics and Electronics C
/
v.35C
no.6
/
pp.67-75
/
1998
Although the nCE(n-th order cross-entropy) error function resolves the incorrect saturation problem of conventional EBP(error back-propagation) algorithm, the performance of MLP's (multilayer perceptrons) trained using the nCE function depends heavily on the order of the nCE function. In this paper, we propose an adaptive learning rate to make the performance of MLP's insensitive to the order of the nCE error. Additionally, we propose a limited error signal of output node to prevent unstable learning due to the adaptive learning rate. The effectiveness of the proposed method is demonstrated in simulations of handwritten digit recognition and thyroid diagnosis tasks.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2005.11a
/
pp.373-376
/
2005
본 논문에서는 이와 같은 요청에 부합되는 강인한 처지제어기를 얻고자, 다층 신경회로망을 이용하여 퍼지제어기 멤버쉽 함수의 전건부 및 후건부 파라미터들을 시스템에 알맞게 자기 조정하기 위해 최급구배법(Steepest Gradient Method)에 근거한 오차 역전파 알고리즘으로 적응 학습시킬 수 있는 뉴로-퍼지제어기 (Neuro-Fuzzy Control : NFC)의 구조 및 알고리즘을 제안하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.439-440
/
2004
전력시스템의 부하주파수제어는 전력계통운용에 있어서 가장 중요하게 다루어야 한다. 본 논문에서는 강인한 퍼지제어기를 얻고자, 다층 신경회로망을 이용하여 퍼지제어기 멤버쉽 함수의 전건부 및 후건부 파라미터들을 시스템에 알맞게 자기 조정하기 위해 최급구배법에 근거한 오차 역전파 알고리즘으로 적응 학습시킬 수 있는 뉴로-퍼지제어기의 구조 및 알고리즘을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.