• Title/Summary/Keyword: 오차정량화

Search Result 197, Processing Time 0.032 seconds

Quantitative Zooplankton Collection Methods for Various Freshwater Ecosystems and Their Applications (담수생태계 특성을 고려한 동물플랑크톤 정량 조사법의 비교와 활용)

  • Oh, Hye-Ji;Chang, Kwang-Hyeon;Jeong, Hyun-Gi;Go, Soon-Mi;La, Geung-Hwan;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.231-244
    • /
    • 2019
  • Zooplankton is essential biological assemblage in understanding the structure and function of aquatic ecosystems, since it plays as a linkage between primary producers and higher trophic level organisms such as fish. Although zooplankton has planktonic characteristics, the sampling and treatment methods for its community analyses are more complicated and variable compared with phytoplankton due to its high diversity in body size and species-specific depth selection behaviors. In the present paper, we reviewed representative classical methods for field sampling and treatments of freshwater zooplankton in relation with quantification of its community structure, and suggested appropriate methods depending on various research objectives.

Artifact Reduction in Sparse-view Computed Tomography Image using Residual Learning Combined with Wavelet Transformation (Wavelet 변환과 결합한 잔차 학습을 이용한 희박뷰 전산화단층영상의 인공물 감소)

  • Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.295-302
    • /
    • 2022
  • Sparse-view computed tomography (CT) imaging technique is able to reduce radiation dose, ensure the uniformity of image characteristics among projections and suppress noise. However, the reconstructed images obtained by the sparse-view CT imaging technique suffer from severe artifacts, resulting in the distortion of image quality and internal structures. In this study, we proposed a convolutional neural network (CNN) with wavelet transformation and residual learning for reducing artifacts in sparse-view CT image, and the performance of the trained model was quantitatively analyzed. The CNN consisted of wavelet transformation, convolutional and inverse wavelet transformation layers, and input and output images were configured as sparse-view CT images and residual images, respectively. For training the CNN, the loss function was calculated by using mean squared error (MSE), and the Adam function was used as an optimizer. Result images were obtained by subtracting the residual images, which were predicted by the trained model, from sparse-view CT images. The quantitative accuracy of the result images were measured in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The results showed that the trained model is able to improve the spatial resolution of the result images as well as reduce artifacts in sparse-view CT images effectively. Also, the trained model increased the PSNR and SSIM by 8.18% and 19.71% in comparison to the imaging model trained without wavelet transformation and residual learning, respectively. Therefore, the imaging model proposed in this study can restore the image quality of sparse-view CT image by reducing artifacts, improving spatial resolution and quantitative accuracy.

Radar Data Correction for Long Distance Observation In Coastal Zone (해안지역 내 원거리 레이더관측자료의 보정에 관한 연구)

  • Ricardo S. TENORIO;Byung-Hyuk Kwon;Hong-Joo Yoon;Dong-In Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.985-996
    • /
    • 2000
  • In the coastal zone, to draw up short and medium range weather forecasts, mesoscale pluviogenic systems coming from the sea have to be observed in real time. These observations use remote sensing. However, satellite remote sensing is not sufficient to describe pluviogenic systems; reference to radar long distance observations is indispensable. This paper deals with the corrections, which must be made to long distance radar data if the rainfall field is to be both accurately and quantitatively defined. The error due to vertical variation in the reflectivity factor can be corrected from estimation of the mean profiles or by a climatic adjustment method. Atten-uation in the propagation can be corrected by an iterative polarimetric method. These various correc-tions permit the distance validity limits of radar data to be extended.

  • PDF

Overview of Arterial Spin Labeling Perfusion MRI (동맥스핀표지 관류 자기공명영상의 개요)

  • Kang, Sung-Jin;Han, Man-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.145-152
    • /
    • 2017
  • The arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) method that can evaluate tissue perfusion using blood in the body. The characteristic of non-invasive examinations without contrast agents and the quantitative measurement of perfusion volume is possible, which are increasingly being used for clinical and research purposes. Up to the present, The ASL method has lower SNR than the perfusion imaging method using contrast agent and because optimization of various parameter in the imaging process is difficult, Which may result in measurement errors. To improve this, ASL methods using various technologies are introduced. This paper briefly introduces the outline of ASL, its features in imaging process, various techniques, and clinical application.

A Study on the Analysis Technique of Sequence Landscaping through the Application and Development of Visual Amount Calculation Program of Landscapes (경관의 시각량 산출 프로그램 개발과 적용을 통한 연속경관 시퀀스 분석기법 연구)

  • Koo, Min-Ah
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.5
    • /
    • pp.12-25
    • /
    • 2016
  • In this study, in order to facilitate analysis in a continuous sequence, including the concept of the landscape experience time, countless frames of a continuous landscape were extracted. The amount of visual elements in each frame was data-converted numerically to take advantage of the quantitative data necessary for landscape planning and design was calculated in the rhythm of the sequence. In Order to shoot video with the flow of the line of sight of experience in landscape districts and landscape control points along the landscape corridor which is a continuous path, each of the corresponding computer motion techniques. This study developed a CRVP Koo computer program to effectively calculate the continuous visual number of specific landscape components by extracting uncounted frames at regular intervals, and after verifying, attempting to apply this to the target site. Through the applied result, it was possible to extract the digitized quantitative rhythm for each component of each landscape, the margin of error is very small when compared with the results of manual in photoshop, it was able to overcome the drawbacks of the manual. Using the rhythm of the derived sequence, and those close to the experience of the landscape, it was possible to achieve quantitative analysis derived from a variety of perspectives as well as was possible to be used as quantitative basis data and analysis technique for landscape planning and design.

AWG device characteristic dependence on the fabrication error limit (도파폭 공정오차에 따른 광도파 특성변화와 소자성능 저하)

  • 박순룡;오범환
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.342-347
    • /
    • 1999
  • As the waveguide width and the radius of curvature get smaller for the effort of monolithic fabrication of integrated photonic devices, the waveguide characteristics change significantly according to the change of the waveguide width or the radius of curvature. Especially, variation of the waveguide width due to fabrication process errors induces a phase error for each waveguide from the change of the propagation constant. Therefore, it is important to quantify these variation effects on the device characteristics for the design and fabrication of highly integrated photonic devices. Here, we analyze four different types of waveguides to get general characteristics in propagation constant change by utilizing the effective index method and the analytic solution method. Futhermore, the output characteristics of two AWG(Arrayed Waveguide Grating) devices are simulated by a highly-functional computer code. The simulated results have been found to be similar to the realistic device characteristics. The required fabrication error limit for the ridge-type InP-AWG device should be smaller than 0.02 ${\mu}{\textrm}{m}$ to get better channel crosstalk than-25 dB, while the required fabrication error limit for rib-type silica-AWG devices may be allowed up to 0.1 ${\mu}{\textrm}{m}$ to obtain better crosstalk than -30 dB.

  • PDF

A Study on Estimation of Vehicle Miles Traveled (자동차주행거리 추정방안 연구)

  • Ahn, Won-Chul;Park, Dong-Joo;Heo, Tae-Young;Yeon, Ji-Youn;Kim, Chan-Sung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.6
    • /
    • pp.64-76
    • /
    • 2014
  • This study identified the causes of errors that could take place in the estimation process of vehicle miles traveled and quantified the effects of each of those causes on the estimation accuracy of vehicle miles traveled via error rate to propose an efficient way to estimate vehicle miles traveled. The study proceeded as follows: first, the study established survey data of vehicle miles traveled in the pilot test areas to test the accuracy of a method to estimate vehicle miles traveled. Second, the causes of errors with the estimation of vehicle miles traveled were categorized into errors with the sample size, sampling methods, and homogeneous link setting methods. In addition, many different methodologies were set to minimize errors with the estimation of vehicle miles traveled according to each of the causes. Third, error rates of estimation of vehicle miles traveled were compared and analyzed according to each of the methodologies. Finally, a toy network was established to propose a way of estimating vehicle miles traveled by taking the local characteristics into consideration. The study finds its significance in that it proposed an efficient way to estimate vehicle miles traveled through an experiment and planning approach and made use of survey data of vehicle miles traveled to test estimation accuracy. The proposed way of estimating vehicle miles traveled by taking into account the local characteristics will make a contribution to the estimation of vehicle miles traveled by the areas in future along with the level of data offered in the study.

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Criteria and Index of Social and Economic Evaluation in River Restoration (하천복원사업의 사회.경제성 평가 기준 및 지표에 관한 연구)

  • Kim, Chong-Won;Yi, Jung-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.470-474
    • /
    • 2007
  • 본 논문에서는 하천복원사업으로부터 발생하는 사회 경제적 편익의 측정 및 평가를 위한 기준 및 지표를 다루고자 한다. 하천복원사업의 목적 및 하천의 기능 및 사업의 영향을 기초로 선정된 평가 기준은 크게 생태적 측면과 사회 경제적 측면으로 나눌 수 있다. 본 연구에서 생태적 측면이 강조되는 것은 하천 생태의 다양한 측면을 파악하는 것이 사회 경제성 연구에 있어 풍부한 논의의 가능성을 제공해주는 측면이 있기 때문이다. 이는 하천복원사업이 가지는 복합적인 성격으로 인해 사업의 사회적, 경제적, 생태적 영향이 서로 고립되지 않고 영향을 주고받는 것에서 연유한다. 첫 번째 평가 기준인 생태적 측면에서는 세부기준으로 생태계 및 수문부문 등의 변화를 포함하며, 복원사업 전후의 서식처 및 생물 종 다양성의 변화, 하상의 다양화 등을 지표로 고려할 수 있다. 나머지 큰 평가 기준인 사회 경제적 측면에서는 홍수방지 효과나 수질개선 효과와 같은 우리가 생태계로부터 제공받는 직접적인 서비스나 토지 이용의 변화 및 그 변화에서 야기되는 영향(하천의 친수 기능이나 학습효과 등), 복원사업의 관리 및 비용 측면 등을 세부기준으로 고려할 수 있다. 하천복원사업의 구체적인 평가를 위해, 각 세부기준에 대한 지표는 현 복원사업에서 실시되는 평가기법, 하천복원관련 문헌조사 및 사례조사를 통해 검토하여 일차적으로 선정한다. 각 지표는 고려하고자 하는 특성에 따라 정량화가 용이한 지표와 정성적 측면이 강한 지표로 나뉜다. 이렇게 선정된 지표는 전문가 조사를 통해 지표에 대한 의견을 수렴하여 확정한다.한 치즈곤죽에서는 쓴맛 펩타이드가 형성되었다가 사라짐을 관찰할수 있었다. 한편 지질분해효소를 침가할 경우 총 휘발성산이 4일 이후에 급격히 증가함을 통해 사용한 효소는 유지방을 잘 분해함을 알 수 있었으며 GLC에 의한 유리 지방산의 분석 결과는 Cheddar치즈곤죽은 시판Cheddar 치즈와 비슷하고 Italian형 치즈곤죽은 시판 Italian치즈보다 약간 떨어졌다. Cheddar치즈의 중요한 품미성분인 활성 SH기는 glutathione을 첨가한 치즈곤죽에서 발효 4일부터 증가하였으며 단백질분해효소를 함께 첨가할 경우 그 증가현상이 현저하였다. 단백질분해요소의 첨가유무에 따라 점도 변화는 다른 두 가지 양상으로 나타나 효소를 첨가할 경우 단백질이 분해됨에 따라 점도가 급격히 감소하였다.>${\pm}0.36$) %, 0.34(${\pm}0.27$) %, 0.34(${\pm}0.18$) % 의 오차를 보였다 중간에 6 cm 의 PP 을 위치한 경우에는 에너지별로 1.15(${\pm}1.86$) %, 0.90(${\pm}1.43$)%, 0.86(${\pm}1.01$)% 의 오차를 나타내었다. 이 경우에는 PCD 10 cm 의 경우에 비교적 큰 오차를 보였으며 PCD 10 cm 인 경우를 제외하면 에너지별로 0.47(${\pm}1.17$) %, 0.42(${\pm}0.96$) %, 0.55(${\pm}0.77$0.

  • PDF

A Method to Calculate a Pass Rate of the ${\gamma}$-index Analysis in Tomotherapy Delivery Quality Assurance (DQA) (단층치료기를 이용한 방사선 치료의 환자별 정도관리 평가를 위한 감마인덱스의 정량화 방법)

  • Park, Dahl;Kim, Yong-Ho;Kim, Won-Taek;Kim, Dong-Won;Kim, Dong-Hyun;Jeon, Ho-Sang;Nam, Ji-Ho;Lim, Sang-Wook
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.340-347
    • /
    • 2010
  • DQA, a patient specific quality assurance in tomotherapy, is usually performed using an ion chamber and a film. The result of DQA is analysed with the treatment planning system called Tomo Planning Station (TomoPS). The two-dimensional dose distribution of film measurement is compared with the dose distribution calculated by TomoPS using the ${\gamma}$-index analysis. In ${\gamma}$-index analysis, the criteria such as 3%/3 mm is used and we verify that whether the rate of number of points which pass the criteria (pass rate) is within tolerance. TomoPS does not provide any quantitative information regarding the pass rate. In this work, a method to get the pass rate of the ${\gamma}$-index analysis was suggested and a software PassRT which calculates the pass rate was developed. The results of patient specific QA of the intensity modulated radiation therapy measured with I'mRT MatriXX (IBA Dosimetry, Germany) and DQA of tomotherapy measured with film were used to verify the proposed method. The pass rate was calculated using PassRT and compared with the pass rate calculated by OmniPro I'mRT (IBA Dosimetry, Germany). The average difference between the two pass rates was 0.00% for the MatriXX measurement. The standard deviation and the maximum difference were 0.02% and 0.02%, respectively. For the film measurement, average difference, standard deviation and maximum difference were 0.00%, 0.02% and 0.02%, respectively. For regions of interest smaller than $24.3{\times}16.6cm^2$ the proposed method can be used to calculate the pass rate of the gamma index analysis to one decimal place and will be helpful for the more accurate DQA in tomotherapy.