• Title/Summary/Keyword: 오존수

Search Result 668, Processing Time 0.032 seconds

Evaluation of the Effect of Urban-agriculture on Urban Heat Island Mitigation (도시농업의 도시열섬현상 저감효과에 대한 계량화 평가연구)

  • Eom, Ki-Cheol;Jung, Pil-Kyun;Park, So-Hyun;Yoo, Sung-Yung;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.848-852
    • /
    • 2012
  • Vegetation can make not only to lower the urban ambient air temperature (UAAT) by crop evapotranspiration (ET) and increasing solar radiation albedo, but also to reduce the urban air pollution by $CO_2$ uptake and $O_2$ emission in addition to the reducing ozone concentrations by aid of lower the UAAT. To evaluate the effect of vegetation on urban heat island mitigation (UHIM), the climate change of 6 cities during 30 years are analysed, and the amount of ET, $CO_2$ uptake, $O_2$ emission and ozone concentrations are estimated in Korea. The most hot season is the last part of July and the first part of August, and the highest average UAAT of a period of ten days was $35.03^{\circ}C$ during 30 years (1979 - 2008). The mean values of maximum ET of rice and soybean in urban area during urban heat island phenomena were 6.86 and $6.00mm\;day^{-1}$, respectively. The effect of rice and soybean cultivation on lowering the UAAT was assessed to be 10.5 and $3.0^{\circ}C$ in Suwon, respectively, whereas the differences between the UAAT and canopy temperature at urban paddy and upland in Ansung were 2.6 and $2.2^{\circ}C$. On the other hand, the urban-garden in Suwon city had resulted in lowering the UAAT and the surface temperature of buildings to 2.0 and $14.5^{\circ}C$, respectively. Furthermore, the amounts of $CO_2$ uptake by rice and soybean were estimated to be 20.27 and $15.54kg\;CO_2\;10a^{-1}day^{-1}$, respectively. The amounts of $O_2$ emission by rice and soybean were also assessed to be 14.74 and $11.30kg\;O_2\;10a^{-1}day^{-1}$, respectively. As other cleaning effect of air pollution, the ozone concentrations could be also estimated to reduce 21.0, 8.8, and 4.0 ppb through rice-, soybean cultivation, and urban gardening during most highest temperature period in summer, respectively.

Intercomparison of Satellite Data with Model Reanalyses on Lower- Stratospheric Temperature (하부 성층권 온도에 대한 위성자료와 모델 재분석들과의 비교)

  • Yoo, Jung-Moon;Kim, Jin-Nam
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.137-158
    • /
    • 2000
  • The correlation and Empirical Orthogonal Function (EOF) analyses over the globe have been applied to intercompare lower-stratospheric (${\sim}$70hPa) temperature obtained from satellite data and two model reanalyses. The data is the19 years (1980-98) Microwave Sounding Unit (MSU) channel 4 (Ch4) brightness temperature, and the reanalyses are GCM (NCEP, 1980-97; GEOS, 1981-94) outputs. In MSU monthly climatological anomaly, the temperature substantially decreases by ${\sim}$21k in winter over southern polar regions, and its annual cycle over tropics is weak. In October the temperature and total ozone over the area south of Australia remarkably increase together. High correlations (r${\ge}$0.95) between MSU and reanalyses occur in most global areas, but they are lower (r${\sim}$O.75) over the 20-3ON latitudes, northern America and southern Andes mountains. The first mode of MSU and reanalyses for monthly-mean Ch4 temperature shows annual cycle, and the lower-stratospheric warming due to volcanic eruptions. The analyses near the Korean peninsula show that lower-stratospheric temperature, out of phase with that for troposphere, increases in winter and decreases in summer. In the first mode for anomaly over the tropical Pacific, MSU and reanalyses indicate lower-stratospheric warming due to volcanic eruptions. In the second mode MSU and GEOS present Quasi-Biennial Oscillation (QBO) while NCEP, El Ni${\tilde{n}}$o. Volcanic eruption and QBO have more impact on lower-stratospheric thermal state than El Ni${\tilde{n}}$o. The EOF over the tropical Atlantic is similar to that over the Pacific, except a negligible effect of El Ni${\tilde{n}}$o. This study suggests that intercomparison of satellite data with model reanalyses may estimate relative accuracy of both data.

  • PDF

The Stability Appraisement on Cultural Property Material with the Replacing Fumigation Gas of Methyl Bromide (Methyl Bromide를 대체하는 훈증 가스의 문화재 재질 안정성 평가)

  • Kang, Dai-Ill
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.283-291
    • /
    • 2009
  • Methyl Bromide that was used as fumigation gas turned out to be the substance of destroying the ozone layer. For that reason, at the Montreal Protocol in 1987 the use of methyl bromide was forbidden starting 2005 in the advanced country. Also according to the 2007 Bali Protocolly methyl bromide is expected to be forbidden and therefore the purpose of this study is to find out the effects of substitution fumigation gas (Ethylene Oxide+HFC 134a, Methyl Iodide, Cyanogen and Argon) on the metal(silver, copper and iron), wood(oregon pine), pigment(yellow, red, blue, white and black), textile(hemp, ramie, jute, silk1 and silk2 / indigo, safflower and cork) and paper. After the fumigation test, ethylene oxide+HFC 134a did not have changes in the weight and color of the material itself before and after the experiment. On exterior alteration, color change occurred partly on paper and metal. Also, in most materials color change extent was 0.5 to 1.5 on the average and showed scanty difference. The materials after the fumigation test with methyl iodide did not show weight changes after the test. However, color changes more than 1.0 was shown in most of the materials especially in dyed textile material. In blue pigment, the discoloration on the surface could be seen by naked eyes. Fumigation test with cyanogen gas did not show weight changes and discoloration is more than 1.5 before and after the test. The weight changes of test materials with the argon gas was decreased about 3 to 6%. It can be observed that discoloration on paper was generated. Color changes can be seen on jute dyed with safflower and cork for two weeks with argon gas and the extent was 6.3 and 6.0.

  • PDF

The Review of Environment, Food and Exercise on Allergy Anaphylaxis (환경, 음식 및 운동 알레르기 반응에 대한 고찰)

  • Kwak, Yi-Sub;Baek, Young-Ho;Kim, Seung-Hyun;Kim, Young-Il;Yoo, Byung-In
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.147-152
    • /
    • 2010
  • Exercise-induced anaphylaxis (EIA) is a physical allergy, sometimes severe, triggered by exertion following specific food intake. It was defined for the first time in 1980. EIA is associated with different kinds of exercise. The clinical manifestations progress from itching, erythema and urticaria to some combination of cutaneous angioedema and vascular collapse. Mast cell participation in the pathogenesis of this syndrome has been proved by the findings of an elevated serum histamine level during exhaustive exercise. As predisposing factors of EIA, a specific or even nonspecific sensitivity to food has been reported. Food-dependent exercise-induced anaphylaxis (FDEIA) is a distinct form of food allergy induced by physical exercise. It is typified by the onset of anaphylaxis during exercise which was preceded by the ingestion of the causal food allergens. The diagnosis of FDEIA is heavily dependent on clinical history. Allergy tests may need to be performed using a broad panel of food and food additives. As with food allergies, FDEIA diagnosis is based on interview, biological test and skin test. Prophylaxis aims to prevent a recurrence; the patient should be given an emergency kit to deal with any recurrent episodes. After the food allergen has been identified, it should be avoided for at least 4 to 5 hours before any exercise. Two cases of EIA are presented (EIA to circumstances; FDEIA) in this paper, The diagnosis, pathophysiology and therapy of FDEIA are also reviewed.

WATER CHLOROFORM LEVELS IN INDOOR SWIMMING POOLS IN A CITY OF KOREA AND IN A CITY OF NEW JERSEY IN THE UNITED STATES (국내 및 미국 뉴저지주의 수영장 물에서의 클로로포름)

  • 조완근
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.101-109
    • /
    • 1994
  • Chlorinated water in swimming pools contains chloroform at elevated levels compared to chlorinated drinking water Chloroform levels in four indoor swimming pools(swimming pools A, B and C in a city of Korea and swimming pool D in a city of New Jersey in the United States) were examined. The chloroform levels in the water of swimming pool C (city-managed) weve shown to be significantly(p=0.0001) different from those of private swimming pools A and B: the mean chloroform levels in the pools A, B, and C are 22.8, 17.8, and 31.1 $\mu\textrm{g}$/l, respectively. Furthermore, all of these chloroform levels are significantly(P=0.0001) different from those of New Jersey: chloroform concentration of the Korean pools ranged from 10.9 $\mu\textrm{g}$.l to 47.9 $\mu\textrm{g}$/l with a mean of 23.2 $\mu\textrm{g}$/l, while it ranged from 27 $\mu\textrm{g}$/l to 96$\mu\textrm{g}$/l with a mean of 64.4 $\mu\textrm{g}$/l in the New Jersey pool. The disinfection processes would cause part of this difference since the swimming pools in Korea applied both chlorination and ozonation method, while the swimming pool in New Jersey used chlorination method only. It was implied that swimming parameters inconsistently vary, resulting in fluctuation of and no constant accumulation of chloroform in the water with the change of time for the day. A regression analysis showed no relationships between sampling time and chloroform concentrations for the sampling day in the swimming pools of Korea. A F-test indicated no significant difference of chloroform concentrations in the morning and afternoon samples collected in the swimming pools. Ingestion dose was estimated to be 0.58$\mu\textrm{g}$ from an hour swimming in a city of Korea, taking into accounting an average of 23.2 $\mu\textrm{g}$/l in swimming pools in the city In extreme situation, the ingestion dose was estimated to be 12.0 $\mu\textrm{g}$ from an hour swimming in a city of Korea.

  • PDF

Accumulation of oxyresveratrol in Ramulus mori upon postharvest storage (숙성에 의한 뽕나무 상지 내 옥시레스베라트롤 축적)

  • Kim, Jun-Ho;Kim, Ki-Hyun;Lee, Min-Young;Lim, Young-Hee;Kim, Jeong-Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.98-104
    • /
    • 2018
  • Oxyresveratrol (trans-2, 3', 4, 5'-tetrahydroxystilbene), found in many plants including grape, peanut and mulberry, is a phytoalexin, an antimicrobial and antioxidative substance that rapidly accumulates in areas infected by the pathogen. We examined the accumulation of oxyresveratrol in nine Morus alba L. cultivars with respect to storage time and temperature postharvest and infection with GRAS microorganisms. Among the nine cultivars, the Suwon cultivar showed the highest oxyresveratrol content (9.6-fold increase) postharvest, when stored at $30^{\circ}C$ for 7 days. The optimal temperature and postharvest storage time for oxyresveratrol accumulation was $30^{\circ}C$ and 6 days. When Ramulus mori was infected with five microorganisms, the accumulation of oxyresveratrol increased over 4-fold in response to B. coagulans infection. These results suggest that oxyresveratrol accumulation is influenced by storage temperature, storage time, Ramulus mori cultivars, and microbial attack. Therefore, postharvest storage for an appropriate time period at a suitable temperature might be a useful way to industrially produce Ramulus mori cultivars with high oxyresveratrol content.

Analysis of Uncertainty in Ocean Color Products by Water Vapor Vertical Profile (수증기 연직 분포에 의한 GOCI-II 해색 산출물 오차 분석)

  • Kyeong-Sang Lee;Sujung Bae;Eunkyung Lee;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2023
  • In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.

Air Pollution and Its Effects on E.N.T. Field (대기오염과 이비인후과)

  • 박인용
    • Proceedings of the KOR-BRONCHOESO Conference
    • /
    • 1972.03a
    • /
    • pp.6-7
    • /
    • 1972
  • The air pollutants can be classified into the irritant gas and the asphixation gas, and the irritant gas is closely related to the otorhinolaryngological diseases. The common irritant gases are nitrogen oxides, sulfur oxides, hydrogen carbon compounds, and the potent and irritating PAN (peroxy acyl nitrate) which is secondarily liberated from photosynthesis. Those gases adhers to the mucous membrane to result in ulceration and secondary infection due to their potent oxidizing power. 1. Sulfur dioxide gas Sulfur dioxide gas has the typical characteristics of the air pollutants. Because of its high solubility it gets easily absorbed in the respiratory tract, when the symptoms and signs by irritation become manifested initially and later the resistance in the respiratory tract brings central about pulmonary edema and respiratory paralysis of origin. Chronic exposure to the gas leads to rhinitis, pharyngitis, laryngitis, and olfactory or gustatory disturbances. 2. Carbon monoxide Toxicity of carbon monoxide is due to its deprivation of the oxygen carrying capacity of the hemoglobin. The degree of the carbon monoxide intoxication varies according to its concentration and the duration of inhalation. It starts with headache, vertigo, nausea, vomiting and tinnitus, which can progress to respiratory difficulty, muscular laxity, syncope, and coma leading to death. 3. Nitrogen dioxide Nitrogen dioxide causes respiratory disturbances by formation of methemoglobin. In acute poisoning, it can cause pulmonary congestion, pulmonary edema, bronchitis, and pneumonia due to its strong irritation on the eyes and the nose. In chronic poisoning, it causes chronic pulmonary fibrosis and pulmonary edema. 4. Ozone It has offending irritating odor, and causes dryness of na sopharyngolaryngeal mucosa, headache and depressed pulmonary function which may eventually lead to pulmonary congestion or edema. 5. Smog The most outstanding incident of the smog occurred in London from December 5 through 8, 1952, because of which the mortality of the respiratory diseases increased fourfold. The smog was thought to be due to the smoke produced by incomplete combustion and its byproduct the sulfur oxides, and the dust was thought to play the secondary role. In new sense, hazardous is the photochemical smog which is produced by combination of light energy and the hydrocarbons and oxidant in the air. The Yonsei University Institute for Environmental :pollution Research launched a project to determine the relationship between the pollution and the medical, ophthalmological and rhinopharyngological disorders. The students (469) of the "S" Technical School in the most heavily polluted area in Pusan (Uham Dong district) were compared with those (345) of "K" High School in the less polluted area. The investigated group had those with subjective symptoms twice as much as the control group, 22.6% (106) in investigated group and 11.3% (39) in the control group. Among those symptomatic students of the investigated group. There were 29 with respiratory symptoms (29%), 22 with eye symptoms (21%), 50 with stuffy nose and rhinorrhea (47%), and 5 with sore thorat (5%), which revealed that more than half the students (52%) had subjective symptoms of the rhinopharyngological aspects. Physical examination revealed that the investigated group had more number of students with signs than those of the control group by 10%, 180 (38.4%) versus 99 (28.8%). Among the preceding 180 students of the investigated group, there were 8 with eye diseases (44%), 1 with respiratory disease (0.6%), 97 with rhinitis (54%), and 74 with pharyngotonsillitis (41%) which means that 95% of them had rharygoical diseases. The preceding data revealed that the otolaryngological diseases are conspicuously outnumbered in the heavily polluted area, and that there must be very close relationship between the air pollution and the otolaryngological diseases, and the anti-pollution measure is urgently needed.

  • PDF