• 제목/요약/키워드: 오존/UV/$TiO_2$

검색결과 11건 처리시간 0.027초

오존, 광촉매 및 오존-복합 공정을 이용한 Rhodamine B의 색도와 COD 제거 (Color and COD Removal of Rhodamine B Using Ozone, Photocatalyst and Ozone-Complex Process)

  • 김동석;박영식
    • 대한환경공학회지
    • /
    • 제29권6호
    • /
    • pp.662-669
    • /
    • 2007
  • Rhodamine B(RhB) 폐수의 색도와 COD 제거를 위해 $O_3$, $UV/TiO_2$, $O_3/UV$$O_3/UV/TiO_2$ 공정과 같은 고급산화법의 영향을 연구하였다. 오존 공정의 경우 오존 농도가 높을수록 탈색속도가 높아졌으며, $UV/TiO_2$$O_3/UV/TiO_2$ 공정의 최적 $TiO_2$ 농도는 0.4 g/L 였다. $O_3/UV$ 공정은 오존 공정에 비해 초기 탈색속도상수가 높고 탈색종결시간도 줄어드는 것으로 나타났다. 실험에 적용한 공정의 초기 탈색속도상수의 순서는 $O_3/UV/TiO_2>O_3/UV>O_3>UV/TiO_2$로 나타났다. 모든 공정의 탈색속도가 COD로 표시한 무기화 속도보다 빠르고, COD는 처리에 시간이 더 소요되는 것으로 나타났다. COD 제거속도는 $O_3/UV/TiO_2>O_3/UV>UV/TiO_2{\geqq}O_3$의 순서로 나타났다. 네 공정 중에서 광촉매와 오존 공정을 조합한 $O_3/UV/TiO_2$ 공정이 염료 폐수와 같은 폐수의 색도와 COD 제거에 적절한 것으로 나타났다.

광촉매/오존을 이용한 염색폐수처리에 관한 연구 (A Study on the Dye Wastewater Treatment Using TiO2 Photocatalyst/Ozonation)

  • 김창균;정호진;김종석
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.663-670
    • /
    • 2007
  • This study was performed to provide basic information for evaluating the efficiency and applicable extent of photocatalysis and ozonation for the treatment of dye wastewater. The treatability of dye wastewater by $UV/TiO_2$ and $UV/TiO_2/O_3$ advanced oxidation process (AOP) was investigated under various conditions. The experiments were conducted in a batch reactor of 50 liters equipped with twelve UV Lamps of 16W. In $UV/TiO_2$ AOP, the removal efficiency of TCODMn and Color increased to 58% and 67% respectively with increasing UV intensity. Also, The removal efficiency of TCODMn and Color increased to 97% and 99% respectively with increasing $H_2O_2$. Acid area was more efficient than neutral and alkalic areas in wastewater treatment, and pH 5 was the most effective and the treatment efficiency continually increased as the amount of photocatalyst was increased. When the photocatalyst was increased, TCODMn was removed faster than Color.

상업용 오존촉매와 광촉매를 이용한 오존제거특성 (Characteristics of Residual Ozone Decomposition with Commercial Ozone Decomposition Catalyst (ODC) and Photo catalyst)

  • 변정훈;박재홍;황정호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1255-1260
    • /
    • 2004
  • Decomposition of ozone at room temperature was investigated comparatively with commercial monolithic ozone decomposition catalyst (ODC, $MnO_2$) and monolithic photo catalyst ($TiO_2$). The effects of residence time, UV (ultraviolet) light dependence and ozone concentration on the conversion was presented. UV ray was irradiated using BLB (black light blue) lamp ($315{\sim}400$ nm), supplied with a constant intensity in the reactor. The concentration of ozone in the square-shape reactor can be controlled by combining the DBD (dielectric barrier discharge) reactor with an AC high voltage supply system. The catalytic performance, in presence of UV irradiation did not show significant changes for $MnO_2$ catalyst. $TiO_2$ catalyst was the different case, which showed higher decomposition activity in presence of UV irradiation. Deactivation of catalyst detected by real-time ozone monitor for 120 hours with a constant inlet ozone concentration.

  • PDF

오존과 광촉매를 이용한 조류 부산물중 Geosmin 제거에 관한 연구 (A Study on Geosmin Removal of Algae Byproducts by Ozonation and Photocatalysis)

  • 김은호;성낙창;최용락
    • 생명과학회지
    • /
    • 제9권5호
    • /
    • pp.581-589
    • /
    • 1999
  • This study was carried out to compare ozonation with photocatalysis degradation for removal Geosmin of algae byproduct. The change of pH was decresed from 7.02 to 2.8 after contact time 480 minute for ozonation. In case of UV-germicidal lamp, pH was very quickly increased from 7.02 to 7.5, but Halogen lamp did very slowly change pH. Geosmin degradation ratio was as following, UV-germicidal lamp/TiO2(100mg/L) O3>UV-germicidal lamp/TiO2(50mg/L)>UV-germicidal lamp(10W)>halogen lamp(50W). Instead of TiO2 suspension solution, Geosmin degradation ratio was very low using hollow bead and pellet as coated TiO2. As a result of identifing byproducts, ozonation generated three species of aldehyde such as 3-Heptanone and three species of alcohol such as Heptanal, but photocatalysis formed 1, 14-Tetradecanediol infinitesimally.

  • PDF

피루브산의 오존산화반응에 미치는 TiO2 첨가 및 UV 조사의 영향 (Effect of UV Irradiation and TiO2 Addition on the Ozonation of Pyruvic Acid)

  • 이철규
    • 한국물환경학회지
    • /
    • 제32권1호
    • /
    • pp.23-29
    • /
    • 2016
  • Ozonation was investigated for its ability to remove pyruvic acid in a laboratory-scale batch reactor under various experimental conditions, including UV irradiation, TiO2 addition, and variations in temperature. An ozone flow rate of 1.0 L min-1 and a concentration of 75±5 mg L-1 were maintained throughout the experiment, and pH, COD, and TOC were measured at 10 min intervals during a 60 min reaction. Our results confirmed that the combination of UV irradiation and photocatalytic TiO2 in the ozonation reaction improved the removal efficiency of both COD and TOC in aqueous solution at 20℃. Pseudo first-order rate constants and activation energies were quantified based on the COD and TOC measurements. We observed that the O3/UV, O3/UV/TiO2 system increased mineralization and reduced the activation energy (Ea) necessary for pyruvic acid decomposition.

Sulfamethoxazole의 오존산화처리에 관한 연구 (A Study on Ozonation of Sulfamethoxazole)

  • 이철규
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.459-469
    • /
    • 2019
  • The ozonation of sulfamethoxazole (SMX) was performed at 20℃ using a pilot scale countercurrent bubble column reactor. Ozonation systems were combined with UV irradiation and TiO2 addition. As the oxidation reaction proceeded in each treatment system, the pH of the sample decreased and in the O3/UV/TiO2 system, the pH change was the largest from 4.54 to 2.02. Under these experimental conditions, the scavenger impact of carbonate is negligible. The highest COD and TOC removal rate was observed in the O3/UV/TiO2 system due to the UV irradiation and the photocatalytic effect of TiO2. Also, the highest mineralization ratio(ε) value is 0.2 in the O3/UV/TiO2 system, which means theoxidation capacity of the systems. The highest SMX degradation rate constants calculated by COD and TOC values (COD and TOC) were 2.15 × 10-4 sec-1 and 1.00 × 10-4 sec-1 in the O3/UV/TiO2 system, respectively. The activation energy (Ea) of ozone treatment follows the Arrhenius law. It was calculated based on COD and TOC. Each activation energy decreased in order of single O3> O3/TiO2> O3/UV > O3/UV/TiO2 system. The result showed that ΔH is more effective than ΔS in each SMX ozontaionsystem, that is characteristic of the common oxidation reaction.

4-nonylphenol의 오존산화 처리반응에 관한 연구 (A Study on Ozonation of 4-nonylphenol)

  • 이철규
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.736-743
    • /
    • 2017
  • In this study, 4-nonylphenol (4-NP), an endocrine disrupting chemical, was removed by ozone treatment processes under the various experimental conditions including UV irradiation, $TiO_2$ addition. The ozone flow rate and concentration were maintained at $1.0L{\cdot}min^{-1}$ and $70{\pm}5mg{\cdot}L^{-1}$. The pH, COD and TOC of the samples were obtained every 10 minutes for 60 minutes in laboratory scale batch reactor. We found that the combination of UV irradiation and $TiO_2$ addition for ozonation improves the removal efficiency of COD and TOC in 4-NP aqueous solution. In case of the $O_3/UV/TiO_2$ system, COD and TOC were greatly reduced to 85.3 ~ 94.0% and 89.2 ~ 97.2%, respectively. 4-NP degradation rate constants, $k_{COD}$ and $k_{TOC}$, were calculated based on the COD and TOC values. Significantly, $k_{COD}$ and $k_{TOC}$ were improved in the $O_3/UV/TiO_2$ treatment process compared with single $O_3$ process, because the oxidation and the mineralization of 4-NP were increased by generating of the hydroxyl radical. The $k_{COD}$ and $k_{TOC}$ were obtained to be $5.81{\times}10^{-4}{\sim}10.8{\times}10^{-4}sec^{-1}$ and $11.9{\times}10^{-4}{\sim}19.4{\times}10^{-4}sec^{-1}$ in the $O_3/UV/TiO_2$ process. Activation energy ($E_a$) of ozone oxidation reaction based on $k_{COD}$ and $k_{TOC}$ were increased in order of $O_3/UV/TiO_2$ < $O3/UV$ < $O_3/TiO_2$ < $O_3$ process. It was confirmed that the addition of $TiO_2$ and UV irradiation to the ozone oxidation reaction significantly reduced the $E_a$ value and the degradation of 4-NP.

부식질의 광산화 및 오존산화에 있어서의 분자량 크기분포 변화 특성에 관한 연구 (A Study of Molecular Size Distributions of Humic Acid by Photo-Oxidation and Ozonation)

  • 김종부;김계월;이동석
    • 분석과학
    • /
    • 제16권4호
    • /
    • pp.292-298
    • /
    • 2003
  • 고급산화공정 (AOP)인 UV시스템과 오존시스템을 이용하여 부식산의 광산화 및 오존 산화를 실시한 후, 용존유기탄소 (DOC)의 제거 효율에 따른 분자량 분포 특성을 한외여과법을 이용하여 조사하였다. 반응 전의 부식산의 분자량 분포는 30,000 daltons 이상의 고분자 물질이 41.5%로 가장 큰 부분을 차지하고 있었으며, 500 dalton 이하의 저분자 물질은 15.2%로 상대적으로 낮은 분포율을 보였다. UV 조사 시간이 증가함에 따라 고분자에서 저분자로의 전환율이 증가하였다. 특히, 30,000 daltons 이상의 고분자물질이 생물학적으로 처리 효율이 높은 500 daltons 이하의 저분자물질로 전환되는 비율은 UV 단독조사 (35.3%)에 비교해 촉매가 첨가된 경우인 $UV/TiO_2$$UV/H_2O_2$ 시스템에서 각각 58.9%와 87.7%으로 증가하였다. 오존 시스템에서는 500 daltons 이하의 저분자로의 전환율보다는 3,000~30,000 daltons의 중간크기 분자량 분포율이 증가하였다. 오존 단독 시스템에서는 10,000~30,000 daltons 크기의 분포율이 최종 60분 처리시 41.5%로 가장 높게 나타났으며, $O_3/H_2O_2$ 시스템에서는 10,000~30,000 daltons과 3,000~10,000 daltons이 각각 38.9%, 26.2%으로 높은 분포율을 나타냈다. 이상에서 얻어진 결과를 토대로 수중 부식산의 보다 효과적인 제거를 위하여, $UV/H_2O_2$, $UV/TiO_2$$O_3$, $O_3/H_2O_2$ 시스템 등과 연계하여 처리할 수 있는 단위공정을 제안하였다.

오존과 광촉매를 이용한 Geosmin 제거 및 부산물 생성에 관한 연구 (A Study on removal of Geosmin by Ozonation and Photocatalysis and Generation of by-products)

  • 김영웅;손희종;유명호;김성윤;김철
    • 한국물환경학회지
    • /
    • 제16권4호
    • /
    • pp.445-457
    • /
    • 2000
  • This study was carried out comparing with ozone oxidation and photocatalytic degradation for removal of geosmin. In the change of pH, Ozonation, UV-Germicidal lamp and Halogen lamp irradiation and Halogen $lamp/TiO_2$ Powder was very slowly changing, but UV-Germicidal $lamp/TiO_2$ Powder was rapidly changed from 7.0 to 7.7 until 300min of irradiation time, and varied a little after. Geosmin degradation ratio was as following, UV-Germicidal $lamp/TiO_2$ $Powder(200mg/L){\geq}O_3$ > UV-Germicidal $lamp/TiO_2$ $Pw(100mg/L)$ > UV-Germicidal lamp > Halogen lamp. The result of investigation of generated by-products were 3-Heptanone, two sort of aldehydes and three sort of alcohols by ozonation. But It was not generated by photocatalytic degradation.

  • PDF

TiO2 광촉매를 함유한 PET와 나일론 6 나노복합체막의 자외선/오존에 대한 안정성 (The UV/Ozone Stability of PET and Nylon 6 Nanocomposite Films Containing TiO2 Photocatalysts)

  • 진성우;장진호
    • 한국염색가공학회지
    • /
    • 제26권2호
    • /
    • pp.88-98
    • /
    • 2014
  • This study is to assess the photocatalytic degradation of PET and Nylon 6 films containing nano-sized $TiO_2$ powders of anatase and rutile types. The PET and Nylon 6 films containing six kinds of the nanoparticles were prepared by melt casting method using a heating press machine. Reflectance in visible region and water contact angles of the irradiated PET and Nylon 6 composite films decreased with increasing UV/$O_3$ irradiation. Also the enhanced hydrophilicity has a close relationship with the increase in the Lewis base parameter, which indicates more oxidized polymer surfaces. The photocatalytic degradation of the nanocomposite films increased with increasing $TiO_2$ content and UV energy, which is more significant with the anatase types rather than the rutile types. The amide linkages in the Nylon 6 seemed to be more susceptible to the UV light compared to the ester groups in the PET, particularly in the presence of the $TiO_2$ photocatalysts. The photoscission and photodegradation of the polymers in the composites produced more degraded structure assisted by the photocatalytic activity of the $TiO_2$ nanoparticles. Also the composite films can bleach the methylene blue dyes more easily under the UV/$O_3$ irradiation, suggesting the photobleaching activity of the $TiO_2$ nanoparticles.