• Title/Summary/Keyword: 오염정화

Search Result 939, Processing Time 0.026 seconds

The Uranium Removal in Groundwater by Using the Bamboo Charcoal as the Adsorbent (대나무 활성탄을 흡착제로 활용한 오염지하수 내 우라늄 제거)

  • Lee, Jinkyun;Kim, Taehyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Batch sorption experiments were performed to remove the uranium (U) in groundwater by using the bamboo charcoal. For 2 kinds of commercialized bamboo charcoals in Korea, the U removal efficiency at various initial U concentrations in water were investigated and the optimal sorption conditions to apply the bamboo charcoal were determined by the batch experiments with replicate at different pH, temperature, and reaction time conditions. From results of adsorption batch experiments, the U removal efficiency of the bamboo charcoal ranged from 70 % to 97 % and the U removal efficiency for the genuine groundwater of which U concentration was 0.14 mg/L was 84 %. The high U removal efficiency of the bamboo charcoal maintained in a relatively wide range of temperatures ($10{\sim}20^{\circ}C$) and pHs (5 ~ 9), supporting that the usage of the bamboo charcoal is available for U contaminated groundwater without additional treatment process in field. Two typical sorption isotherms were plotted by using the experimental results and the bamboo charcoal for U complied with the Langmuir adsorption property. The maximum adsorption concentration ($q_m:mg/g$) of A type and C type bamboo charcoal in the Langmuir isotherm model were 200.0 mg/g and 16.9 mg/g, respectively. When 2 g of bamboo charcoal was added into 100 mL of U contaminated groundwater (0.04 ~ 10.8 mg/L of initial U concentration), the separation factor ($R_L$) and the surface coverage (${\theta}$) maintained lower than 1, suggesting that the U contaminated groundwater can be cleaned up with a small amount of the bamboo charcoal.

Determination of Target Clean-up Level and Risk-Based Remediation Strategy (위해성에 근거한 정화목표 산정 및 복원전략 수립)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.1
    • /
    • pp.73-86
    • /
    • 2007
  • Risk-based remediation strategy (RBRS) is a consistent decision-making process for the assessment and response to chemical release based on protecting human health and the environment. The decision-making process described integrates exposure and risk assessment practices with site assessment activities and remedial action selection to ensure that the chosen actions are protective of human health and the environment. The general sequences of events in Tier 1 is as follows: initial site assessment, development of conceptual site model with all exposure pathways, data collection on pollutants and receptors, and identification of risk-based screening level (RBSL). If site conditions do not meet RBSL, it needs further site-specific tier evaluation, Tier 2. In most cases, only limited number of exposure pathways, exposure scenarios, and chemicals of concern are considered the Tier 2 evaluation since many are eliminated from consideration during the Tier 1 evaluation. In spite of uncertainties due to the conservatism applied to risk calculations, limitation in site-specific data collections, and variables affecting the selection of target risk levels and exposure factors, RBRS provides us time- and cost-effectiveness of the remedial action. To ensure reliance of the results, the development team should consider land and resource use, cumulative risks, and additive effects. In addition, it is necessary to develop appropriate site assessment guideline and reliable toxicity assessment method, and to study on site-specific parameters and exposure parameters in Korea.

마이크로톡스 생물검정법 개량화 연구

  • 이규태;고철환;조병철
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.146-147
    • /
    • 2003
  • 우리나라에서의 환경 오염 관리는 BOD, COD를 비롯한 총 20여가지 항목에 대한 이화학적 분석에 기초를 두고 있기때문에 분석 항목에 포함되지 않는 물질에 의한 독성의 영향은 간과되고 있다. 선진국에서는 이러한 한계점을 극복하기 위해 이화학적 분석기법 이외에 생물검정법을 이용하여 유해화학물질에 대한 독성 판별, 수질환경기준, 퇴적물환경기준, 오염진단과 생태계위해도 평가, 오염정화와 환경복원 등에 활용하고 있다. (중략)

  • PDF

Effect of Water Quality Improvement of Fill Materals in the Stagnant Stream Channel (정체수역에서의 Mattress/Filter 채움재에 따른 수질개선효과)

  • Ko Jin Seok;Jeon Ji Young;Jee Hong Kee;Lee Soontak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.464-468
    • /
    • 2005
  • 산업활동으로 인해 발생하는 슬래그 등의 폐기물을 적절히 처리하는 방법으로서는 저비용 처리형태와 자연계에서 슬래그 등의 특성을 고려한 Filter 기능을 수행할 수 있도록 수질이 악화된 하천이나 정체수역에 투입시켜 수질을 개선시킬 수 있는 방법의 도입이 필요하다. 현재 POSCO에서 발생하는 슬래그와 폐콘크리트의 화학적 성분은 주로 $CaO,\;SiO_2,\;Al_2O_3,\;Fe_2O_3$ 등으로 이루어져 있으며, 침전유발물질 및 흡착성물질이 공존하고 있다. 다공질 형태의 비표면적을 가지고 있어서 정화용 필터로 이용하기에 좋은 이점을 가지고 있다. 슬래그나 폐콘크리트를 Mattress/Filter 채움재 및 수질정화용 여재로 활용하면 폐기물처리, 자원 재활용 그리고 수질 환경 개선의 세 가지 효과를 동시에 얻을 수 있는 방법이 된다. 본 연구에서는 슬래그와 폐콘크리트를 활용한 정체수역에서 정화시스템의 정화특성을 조사하기 위하여 유입수와 유출수의 pH, 용존산소, 질소, 인 등을 측정하여 비교하였다. 수질개선을 위한 Mattress/Filter 시스템의 기본개념은 하천의 오염된 물이 Mattress/Filter의 공극사이를 통과하면서 채움재에 형성된 생물막이 수질 개선과정에서 나타나는 접촉작용, 생물 흡착작용, 생물산화의 분해작용 등을 촉진시키도록 하였다. Mattress/Filter를 이용한 수중 수질개선시스템에서 채움재로 제철폐기물인 슬래그와 건설폐기물인 폐콘크리트를 사용함으로써 Mattress/Filter의 다공성 및 넓은 표면적이라는 특성에 따른 물리적$\cdot$화학적$\cdot$생물학적 작용이 촉진되고 있음을 확인할 수 있었으며, 그 결과 정체수역에 설치한 Mattress/Filter는 다공질 속에서 쉽게 생물막을 형성시키고 유기물의 흡착을 촉진시켜 오염물질을 정화하는데 필요한 자정작용의 효과 증대와 수질개선을 촉진시킬 수 있는 자연생태적 하천정화시스템임을 확인할 수 있었다.

  • PDF

The Effect of Flushing Solutions on ElectroKinetic Remediation of Ferrous Soil Contaminated by Lead (납으로 오염된 철성분 함유토의 동전기 정화 특성에 세척제가 미치는 영향)

  • 김수삼;김병일;한상재;김정환
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.54-62
    • /
    • 2004
  • In order to enhance the efficiency of removal a series of ElectroKinetic Remediation (EKR) tests on ferrous soil contaminated by lead are carried out using acids, chelates and surfactant as flushing agents. The test results indicate that pH in the electrolyte rapidly reached at steady state as the introduce of flushing solution of the lower pH, the type of flushing solution have no effect the distribution of electrical voltage within the sample but the increasing of solution concentration increases it at x/L=0.9. In the distribution of the residual lead in the sample SDS is the highest. Also, the removal efficiency for acetic acid concentration of 1mM Is the highest but the concentration of acetic acid significantly have no effect.

Assessment of Water Purification Capacity of Vegetation Mats for the Reduction of Nonpoint-Source Pollution Loads (비점오염 부하 저감을 위한 식생 매트의 수질정화능 평가)

  • Song, Kyu Sung;Han, Sang Hun
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.70-75
    • /
    • 2016
  • The purpose of this study was to develop water-purification vegetation mats consisting of the eco-friendly materials and to validate their water purification capabilities with the objective of reducing nonpoint pollution into streams. The developed vegetation mats are made of coconut fiber shell and filling consisted of zeolite, diatomaceous earth or a mixture of calcinated foam media. The bench scale assessment of the water purification capability of the three filling materials showed that the removal efficiencies of suspended solid (SS), total nitrogen (T-N) and total phosphorus (T-P) were higher in the foam media than in zeolite or diatomaceous earth. From the results of the field experiment, the removal efficiencies of the vegetation mats filled with the foam media were 60.1% in SS, 32.2% in T-N and 20.2% in T-P. Therefore the vegetation mats filled with the foam media calcinated from zeolite and diatomaceous earth should have higher efficiencies in controlling the nonpoint source pollutions in streams.

Water Purification Properties of Porous Zeolite Concrete (다공성 제올라이트 콘크리트의 수질정화 특성)

  • Choi, Min Ji;Sung, Nack Kook;Park, Sung Jae;Lee, Jung Ah;Yun, Hong Su;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.332-335
    • /
    • 2011
  • As our interests in eco-friendly materials have been significantly increased, the utilization of porous zeolite concrete that has structural functionality and permeability has been increased. In this paper, the mixture of porous concrete and zeolite, which can be used as multirole boulders, was investigated for the suitability of an environment-friendly product by evaluating of the water purification ability. The contamination removal rates of BOD, TOC, T-N, and T-P in stagnant water tank were 70.6, 67.0, 57.7, and 50.6%, respectively. Also for the non-point source pollution with the inflow and the outflow, the removal rates of Zn, Pb, BOD, and COD were 99.9, 90.0, 69.2, and 33.5%, respectively. The performance of the heavy metal contamination removal for the porous zeolite showed better than that of stagnant system. Therefore, it is expected that the installation of the porous zeolite concrete can play a role as an eco-friendly products by its high contamination removal.

Bioremediation of Oil-Contaminated Soil Using an Oil-Degrading Rhizobacterium Rhodococcus sp.412 and Zea mays. (유류 분해 근권세균 Rhodococcus sp. 412와 옥수수를 활용한 유류 오염 토양의 정화)

  • Hong, Sun-Hwa;Park, Hae-Lim;Ko, U-Ri;Yoo, Jae-Jun;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.150-157
    • /
    • 2007
  • The advanced bioremediation of diesel-contaminated soil through the exploration of bacterial interaction with plants was studied. A diesel-degrading rhizobacterium, Rhodococcus sp.412, and a plant species, Zea mays, having tolerant against diesel was selected. Zea mays was seeded in uncontaminated soil or diesel-contaminated soil with or without Rhodococcus sp. 412. After cultivating for 30 days, the growth of Zea mays in the contaminated soil inoculated with Rhodococcus sp. 412 was better than that in the contaminated soil without the bacterium. The residual diesel concentrations were lowered by seeding Zea mays or inoculating Rhodococctis sp. 412. These results Indicate that the simultaneous use of Zea mays and Rhodococcus sp. 412 can give beneficial effect to the remediation of oil-contaminated soil. Bacterial community was characterized using a 16S rDNA PCR and denaturing gradient gel electrophoresis (DGGE) fingerprinting method. The similarities of DGGE fingerprints were $20.8{\sim}39.9%$ between the uncontaminated soil and diesel contaminated soil. The similarities of DGGE fingerprints were $21.9%{\sim}53.6%$ between the uncontaminated soil samples, and $31.6%{\sim}50.0%$ between the diesel-contaminated soil samples. This results indicated that the structure of bacterial community was significantly influence by diesel contamination.

국민과 해양경찰이 만드는 깨끗한 바다

  • Gang, Jin-Seong
    • Environmental engineer
    • /
    • v.24 s.246
    • /
    • pp.58-60
    • /
    • 2007
  • 우리나라에 해양경찰(이하 해경)이 있다는 것은 많은 사람이 알고 있지만, 해경의 주요업무 중 하나가 해양오염관리라는 사실은 국민 일부만이 알고 있는 것 같다. 선박사고로 발생하는 기름 및 위험유해물질(HNS)의 유출시 오염 방제작업, 태풍 또는 홍수로 발생되는 해안쓰레기 정화활동, 해양배출 폐기물 관리 등 다양한 해양환경 업무를 통하여 국민모두가 해양환경의 중요성을 다시 한번 인식할 수 있는 기회가 되었으면 한다.

  • PDF