• Title/Summary/Keyword: 오염저감

Search Result 1,429, Processing Time 0.028 seconds

Improvement of Working Surroundings in the Industrial Waste Incinerator (산업폐기물 소각플랜트의 작업환경개선)

  • Shon Byung-Hyun;Lee Gang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.431-439
    • /
    • 2006
  • A lot of particulate matter and an offensive odor are emitted during the operations of an industrial waste incinerator (IWI), especially pre_treatment and waste input processes. These pollutants affect the labor efficiency of an operator. Therefore, in this study. we have studied the improvement of working surroundings in the industrial waste incinerator by designing a new control system. A computational fluid dynamics has been used to find the diffusion flows of air pollutants (mainly particles and odor) to the working surroundings of the waste treatment complexes. The results obtained from the simulation analysis applied to the basic design on the points (and/or site) and types of pollution control devices. When pollutant control devices are constructed, the concentration of each pollutant at site 1 and 2 decreased about 83-97% for toluene, 48-72% for styrene, 75-87% for xylene, and 23-36% for ammonia, respectively. In addition, the PM-10 and TSP were decreased about 87% and 86% at site 3 (lower part of the waste input), 87% and 85% at site 4 (side part of the waste input), respectively. These indicated that the new control system had an excellent performance of particulate matter and odor removal and it could be applied to other waste treatment plant in place of an industrial waste incinerator.

  • PDF

Characteristics of stormwater runoff from urbanized areas (도시화된 토지이용에서 유출되는 강우유출수의 유출특성분석)

  • Mercado, Jean Margaret R.;Geronimo, Franz Kevin F.;Choi, Jiyeon;Song, Young-Sun;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.159-168
    • /
    • 2012
  • Stormwater runoff affects the quality of surface water and groundwater due to the nonpoint sources (NPSs) of pollutants that it carries during storm events. Typically, urbanized areas experience high pollutant mass emission because of paved roads and other areas which are all highly impervious. For this reason, proper identification of the levels of pollutants from the watershed area is important to pass the Ministry of Environment of the Republic of Korea's water quality standards in rivers and streams. This research was conducted in order to determine and quantify the different constituents present in stormwater runoff generated from highly impervious areas in Cheonan City, Korea. Also, the average event mean concentration (EMC) of stormwater runoff from paved areas was compared with EMCs of other countries to determine the possible causes of its occurrence. In addition, the occurrence of first flush phenomenon was studied in order to find the first flush criteria to be used on the design of best management practices. The results show the pollutant concentration of stormwater runoff was higher than other countries due its landuse and relatively small size of catchment area. During the first 30 minutes of the rainfall events, occurrence of first flush phenomenon was highly evident. Several factors affected the pollutant concentrations in the stormwater such as landuse type, geographic and topographic characteristics,catchment area and amount of rainfall. This research can provide guidance in achieving an effective NPS pollution management applicable to highly urbanized areas in the future.

Determination on the component arrangement of a hybrid rain garden system for effective stormwater runoff treatment (강우유출수 처리를 위한 하이브리드 빗물정원 시스템의 구성요소 배열 연구)

  • Flores, Precious Eureka D.;Geronimo, Franz Kevin F.;Alihan, Jawara Christian P.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.271-278
    • /
    • 2017
  • Low impact development (LID) technology has been recently applied for the treatment of nonpoint source pollutants. Rain garden is one of the widely used LIDs since it utilizes various mechanisms such as biological and physico-chemical treatment to reduce pollutants. However, problem such as clogging has been one of the issues encountered by the rain garden that do not undergo constant maintenance. Therefore, this research was conducted to develop and determine the component arrangement of a rain garden system for a more efficient volume and pollutant reduction. Two hybrid rain garden systems having different characteristics were developed and evaluated to determine the optimum design and arrangement of the system. The results showed that the components arranged in a series manner showed a volume reduction of 93% and a pollutant reduction efficiency of approximately 99%, 93% and 95% was observed for particulates, nutrients and heavy metals, respectively. While when the system is connected in a combined series-parallel, the volume and average pollutant reduction efficiency for the TSS, nutrients and heavy metals are 65%, 94%, 80% and 85%, respectively. Moreover, the component arrangement in the order of sedimentation tank, infiltration tank and plant bed exhibited a high pollutant reduction efficiency compared when the infiltration tank and plant bed were interchanged. The findings of this research will help in the further development and optimization of rain garden systems.

Application of SWMM for Reduction of Runoff and Pollutant Loading in LID Facilities (LID시설의 유출량 및 오염부하 저감효율평가를 위한 SWMM모델의 적용)

  • Jung, Kwang-Wook;Jung, Jong-Suk;Park, Jin-Sung;Hyun, Kyoung-Hak
    • Land and Housing Review
    • /
    • v.8 no.4
    • /
    • pp.249-256
    • /
    • 2017
  • Urbanization can be remarkable affected flood, pollutant loading, ecological system, and green infrastructure by distortion of hydrologic cycle. In order to mitigate these problems in urban, Low Impact Development(LID) technique has been introduced and applied in the world. SWMM model was calibrated with sets of field monitoring data and applied for calculation of runoff and pollutant loading in Asan-tangjung LID city under 2016 rainfall. Runoff reduction of watershed and catchment basins were showed efficiency 12.2% and 62.0%, respectively. Reduction of COD and TP loading also high efficiency in catchment basins were evaluated 74.9 and 71.4%. The results of this study can be used effectively in decision making processes of urban development project by comparing watershed runoff and pollutant reduction by designs of sort of LID technique, LID volume and location.

Effects of Grassed Swale Lengths on Reduction Efficiencies of Non-point Source Pollutants (식생수로 길이가 비점오염물질 저감효율에 미치는 영향)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.387-396
    • /
    • 2013
  • Non-point pollution source is difficult to control due to uncertain outflow path and emission. So, There are many development and research to Best Management Practices(BMP) established to manage the Non-point pollution source. Besides, various methods of estimated efficiency to exact assessment of BMP is presented. In this study, the impact about length of Grassed Swale on reduction efficiency based on monitoring results of Grassed Swale by length is studied. By estimating Grassed Swale reduction efficiency in a variety of methods, the difference between the methods of estimated efficiency was compared with those that. Estimated efficiency method using ER, SOL, ROL, ROF, SOLF, and ROLF methods is analyzed. EMC analysis result is high inflow and outflow concentration distinction organic compound for nutritive salts The result of efficiency analysis along Grassed Swale length sharply increases in a Grassed Swale inlet. After this increase, the efficiency gradually decreases. This is expected that cistern installed in the end of the front. To obtain a stable reduction efficiency of Grassed Swale, minimum length 30m of Grassed Swale should be enough. Also, in order to efficiently and economically design Grassed Swale, the researches on length of Grassed Swale are needed rather than simple analysis of efficiency.

Reduced Loads Characteristics Comparison Between Permeable Pavement and Non-point Pollutants Treatment Facility (투수성 포장재와 비점오염저감시설의 삭감부하량 특징 비교)

  • Gil, Kyung-Ik;Jeon, Hye-Sun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.193-198
    • /
    • 2011
  • This study aimed to provide basic data for permeable pavement application upon design and installation stages by analyzing the effect of permeable pavement used on the facility area rather than using non-point pollutants treatment facility upon development business in accordance with recent trend. To perform this study, the area of development target was separately applied as impermeable and permeable developments so as to compare and analyze the economics of cut pollution load and installation construction cost. Consequently, the processing amount and cut load of non-point pollutant sources are influenced much by permeable and impermeable developments, and it was turned out to be better to develop target river area as permeable area rather than installing non-point pollutants treatment facility of equipment type or natural type upon development to yield smaller discharge load. If we can prepare a countermeasure regulating impermeable area ratio to certain level to manage non-point pollutants upon development based on this result, we can minimize the source of pollution caused by the development.

A Study on the Application of a Turbidity Reduction System for the Utilization of Thermal Wastewater in High Turbidity Zones (고탁도 해역의 온배수 활용을 위한 탁도저감시스템 적용에 대한 연구)

  • Ha, Shin-Young;Oh, Cheol;Gug, Seung-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.916-922
    • /
    • 2018
  • Recently, power plant effluent condensers received a Renewable Energy Certificate as components of hydrothermal energy (weighted 1.5 times) as one target item of the Renewable Portfolio Standard (RPS) policy. Accordingly, more attention is being paid to the value of thermal wastewater as a heat source. However, for utilization of thermal wastewater from power plants in high-turbidity areas like the West Sea of Korea, a turbidity reducing system is required to reduce system contamination. In this study, an experimental test was performed over a month on thermal wastewater from power plants located in the West Sea of Korea. It was found that water turbidity was reduced by more than 80 % and that the concentration of organic materials and nutrient salts was partially reduced due to the reduction of floating/drifting materials. To conduct a comparative analysis of the level of contamination of the heat exchanger when thermal wastewater flows in through a turbidity reducing system versus when the condenser effluent flows in directly without passing through the turbidity system, we disassembled and analyzed heat exchangers operated for 30 days. As a result, it was found that the heat exchanger without a turbidity reducing system had a higher level of contamination. Main contaminants (scale) that flowed in to the heat exchanger included minerals such as $SiO_2$, $Na(Si_3Al)O_8$, $CaCO_3$ and NaCl. It was estimated that marine sediment soil flowed in to the heat exchanger because of the high level of turbidity in the water-intake areas.

Estimation of Water Quality Improvement and Reduction of Influent Pollution by Installation of Water Treatment System Filled with Bio-stone Ball (바이오스톤 볼 수처리 시스템에 의한 오염물질 저감 및 저수지의 수질개선효과 산정)

  • Choi, Sunhwa;Kim, Heungseop;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.471-482
    • /
    • 2019
  • Water treatment system filled with Bio-stone Ball (BSB) have been developed for the purification of polluted water in many rivers and lakes. The real-scale plants of BSB water treatment system was constructed for field application test and water purification evaluation in Maewha reservoir. The average water purification efficiencies of BSB watertreatment system shows BOD 70.3% (47.2~97.4%), COD 45.3% (26.1~64.7%), TOC 19.2% (8.5~50.0%), SS 82.8% (73.1~92.7%), Chl-a 80.4% (57.2~91.8%), TN 23.2% (6.4~39.5%), and TP 51.8% (-1.1~80.1%). BSB water treatment system shows very high at 70~80% in the water purification efficiencies of BOD, Chl-a, and SS. The average of pollution loading reduction by installation of BSB treatment system shows 39.2% for COD and 16.8% for TP. The water quality improvement rates (%) of the Maewha reservoir shows TOC 14.5%, COD 14.5%, Chl-a 12.5% and TP 25.1%. The BSB watertreatment system can be applied to many agricultural reservoirs and major rivers to deal with serious water pollution issues.

Biosparging 공법을 이용한 석유계탄화수소화합물 오염토양에 대한 현장적용성 평가

  • 신정엽;오경철;공준;이승우;전기식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.35-38
    • /
    • 2004
  • 부틸알데히드로 오염된 대상 부지에 Biosparging 공법의 현장 적용을 위해 적정 공기 주입 압력 조건을 도출한 결과, 주 오염층인 자갈질 모래층에 공기주입 가능 파괴압력(Pe)는 약 300mmAq로 측정되었으며 4,500mmAq 압력 조건에서는 용존 산소농도의 영향 반경이 약 3 m로 나타났다. 위의 조건을 적용하여 약 150일간 운전한 결과, 영양물질을 투입하지 않은 초기 90일 동안 최고농도 대비 약 90%가 저감되었으며 그 이후에 영양물질을 투입하여 초기 최고 농도 대비 96%가 저감되어 복원목표치인 50ppm을 모든 지역에서 만족시켰다. 또한 생분해 반응속도가 k=0.03/day로 나타나 휘발성이 낮고 생분 해도가 뛰어난 부틸알데히드로 오염된 자갈질 모래층에 Biosparging공법이 성공적으로 적용된 사례이다.

  • PDF