• Title/Summary/Keyword: 오염입자 측정

Search Result 223, Processing Time 0.025 seconds

The Development and Performance Evaluation of a Cyclone to Remove Hot Particulate from a Contaminated Hot Cell (Hot Cell 내에 오염된 고방사능분진 제거를 위한 사이클론 개발 및 성능평가)

  • Kim Gye-Nam;Won Hui-Jun;Choi Wang-Kyu;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.217-226
    • /
    • 2006
  • The structural and contamination characteristics of hot cells at KAERI were investigated. The SEM results showed that the size of the hot particulate on the inner surface of the hot cell ranged from 0.2 to $10{\mu}m$. It was found that an inlet flow rate of 15 m/sec was suitable for this developed cyclone with a 49 mm optimum vortex finder length. The results showed that the collection efficiency was about 85% for $3{\mu}m$ particles. The collection efficiency didn't show a sharp increase when the inlet flow rate was faster than 15m/sec. When the temperature of the inlet flow gas was increased, the collection efficiency of the cyclone was slightly decreased. The larger the vortex finder length was, the higher the pressure drop in the cyclone was. The cut size diameter decreased with an increment of the Reynolds number. It was established that the flow in the cyclone was a turbulent flow on the basis of the Reynolds number and this turbulent flow caused a pressure drop in the cyclone. $Stk^{1/2}_{50}$ decreased with increasing values of the Reynolds number and it gradually approached a constant value at a higher value of the Reynolds number Namely, $Stk^{1/2}_{50}$ approached approximately 0.045 between 6000 and 8000 of the Reynolds number.

  • PDF

Estimation of SO2 emissions in large point sources at Dangjin City using airborne measurements (항공관측 결과를 활용한 당진시 대형사업장에서의 황산화물 배출량 평가)

  • Kim, Yong Pyo;Kim, Saewung;Kim, Jongho;Lee, Taehyoung
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.107-117
    • /
    • 2020
  • Based on the airborne measurement results over a coal fired power plant and steel work in Dangjin city, SO2 emission amounts of each site are estimated (top-down emission). Airborne measurements were carried out on May-June and October-November 2019. The estimated SO2 emission in 2019 for the power plant was 1502.1 kg/hr and that for the steel work was 2850.5 kg/hr, higher as much as a factor of 2.5 and 2.0, respectively, than the emission amounts provided by both facilities (bottom-up emission). The outcomes strongly illustrates that well designed airborne observations can serve a quantitative diagnostic tool for bottom-up emission estimates. Further research direction to improve the reliability of the top-down emission estimates is suggested.

A Study on the Fine Dust Removal Equipment of Pressurized Water type for the Removal of Exhaust Gas Fine Dust and Volatile Organic Compounds from the Non-industrial combustion plant (비산업 연소 사업장 배출 가스상 미세먼지와 휘발성 유기 화합물 제거를 위한 가압수식 미세먼지 제거 장치 연구)

  • Youn, Jae-Seo;Kim, Sang-Min;Lee, Ye-Ji;Noh, Seong-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.506-512
    • /
    • 2018
  • The fine dust generated in the home and restaurant business occupies a low ratio of about 4% of the total fine dust emissions. However, at the foodservice business, the rate of change of the pollutant concentration is very high, so that the temporary fine dust concentration can be measured up to 60 times. The pollutants generated from non-industrial combustion plants consist of particulate fine dust and gaseous organic compounds. To remove these pollutants, cleaning dust collection system, which is an effective system for simultaneous removal of gaseous and particulate matter, is applied. This is a method of increasing the probability of diffusion capture of the Brownian motion by pressurized liquid injection method using the atomizing nozzle. The dust removal efficiency of the fine dust collecting system was analyzed by nozzle spraying air pressure condition and angle using the manufactured fine dust removing system. As a result, it was confirmed that the efficiency of removal of fine dust and gaseous organic compounds was more than 90%. The developed system is expected to be highly usable in the future because it can remove particulate dust from the existing plant hood system without any installation cost.

Uncertainties of ionic species in snowpit samples determined with ion chromatography system (이온크로마토그래피 시스템을 이용한 눈 시료의 이온성분 측정자료의 불확도 산출)

  • Hong, Sang-Bum;Hur, Soon-Do;Kim, Sun-Mee;Hong, Sungmin;Chung, Ji-Woong;Kang, Namgoo;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.350-363
    • /
    • 2012
  • To determine ionic species in snowpit samples using ion chromatography system, we described the performance of ion chromatography(IC) system, cleaning method of bottle, and interference by filtering procedure. The limit of detection, reproducibilities, and accuracies determined with BCR$^{(R)}$-408 were 0.01-0.26 ${\mu}g$/L, 0.4-17.4%, 4.5-12.0% for cations and 0.02-0.26 ${\mu}g/L$, 0.1-27.6%, 1.3-5.6% for anions, respectively. Lab blank test for sample bottle indicated that $CH_3CO_2{^-}$, $HCO_2{^-}$, and $NH_4{^+}$ can be easily contaminated in the lab environment. The positive interferences of $NO_3{^-}$ were partly attributed to the cleaning method of bottle. The filtering of melted snow sample should be carefully applied because it can positively affect the concentration levels of some ionic species. Finally, this method was applied to measure ionic species in snowpit samples from the upward area near NEEM camp and the uncertainties of measurement data of $F^-$ were also estimated.

Analysis of Membrane Fouling Reduction by Natural Convection Instability Flow in Membrane Filtration of Colloidal Solution: Application of Blocking Filtration Model (콜로이드 용액의 막여과에서 자연대류 불안정 흐름의 막오염 저감 효과 해석: 막힘여과 모델의 적용)

  • Kim, Ye-Ji;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.329-338
    • /
    • 2019
  • The constant-pressure and constant-flux membrane filtration experiments of alumina colloidal solution are performed to investigate defouling effect of the natural convection instability flow (NCIF) induced in membrane module. The permeate flux at constant-pressure and the transmembrane pressure (TMP) at constant-flux experiments are measured by changes the inclined angle (0, 90 and 180°) of membrane module to the gravity, and flux results are analyzed by using the blocking filtration model. NCIF are more induced as the inclined angles increased from 0° to 180°, and the maximum induced NCIF at 180° angle enhances flux to 2.8 times and reduces TMP to 85% after two-hour operation. As a result of analyzing flux data by applying the blocking filtration model, it is more reasonable to analyze them by using the intermediate blocking model within 15-minute operation time and then thereafter times by using the cake filtration model. The induced NCIF at 180° angle reduces the intermediate blocking fouling at 52% in the early operation time of 15-minute and thereafter the cake layer fouling at 93%. The main membrane fouling control mechanism of NCIF induced in membrane module is evaluated as suppressing the formation of the cake layer of particulate colloidal materials on membrane surface.

A Model for Evaluating the Radioactive Contamination in the Urban Environment (도시환경에서 방사성물질의 오염평가 모델개발)

  • Hwang, Won-Tae;Kim, Eun-Han;Jeong, Hyo-Joon;Suh, Kyung-Suk;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.99-105
    • /
    • 2005
  • A model for evaluating radioactive contamination in the urban environment, named METRO-K, was developed as a basic step for accident consequence analysis in case of an accidental release. The three kind of radionuclides $(^{137}Cs,\;^{106}Ru,\;^{131}I)$ and the different chemical forms of iodine (particulate, organic and elemental forms) are considered in the model. The radioactive concentrations are evaluated for the five types of surface (roof, paved road, wall, lawn/soil, tree) as a function of time. Using the model, the contaminative impacts of the surfaces were intensively investigated with respect to with and without precipitation during the measurement periods of radionuclides in air. In addition, a practical application study was conducted using $^{137}Cs$ concentration in air and precipitation measured in an European country at the Chernobyl accident. As a result precipitation was an influential factor in surface contamination. The degree of contamination was strongly dependent on the types of radionuclide and surface. Precipitation was more influential in contamination of $^{137}Cs$ than that of $^{131}I$ (elemental form).

Improvement of Membrane Performance by Natural Convection Instability Flow in Ultrafiltration of Colloidal Solutions (콜로이드 용액의 한외여과에서 자연대류 불안정 흐름의 막성능 개선 효과)

  • Cho, Youn-Joo;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.84-90
    • /
    • 2011
  • We studied the effects of induction of natural convection instability flow (NCIF) according to the gravitational orientation (inclined angle) of the membrane cell on the reduction of membrane fouling in ultrafiltration (UF) of colloidal silica solutions. Five colloidal silica solutions with different silica size (average size = 7, 12, 22, 50 and 78 nm) were used as UF test solutions. The silica particles in colloidal solutions form cakes on the membrane surface thereby causing severe reduction in the flux. The UF performance according to the gravitational orientation of the membrane cell (from 0 to $180^{\circ}$ inclined angle), was examined in an unstirred dead-end cell. We evaluate the effects of NCIF on membrane performance as the flux enhancement ($E_i$). In the dead-end UF of smaller size (7, 12 and 22 nm) silica colloidal solutions, changing the gravitational orientation (inclined angle) of the membrane cell induces NCIF in the membrane module and higher inclined angle and smaller size silica colloidal solution offer more stronger NCIF. This induced NCIF enhances back transport of the deposited silica solutes away from the membrane surface, therefore gives for the improvement of permeate flux. But in UF of more larger size (50 and 78 nm) silica colloidal solutions, NCIF effects are not appearing. These results suggest that the size of colloidal particle affects the extent of NCIF occurrence.

Experimental Study on Electrokinetic Streaming Potential in Micropore Channels of Hollw-Fiber Based on General Helmholtz-Smoluchowski's Principle (일반적 Helmholtz-Smoluchowski 원리에 따른 중공사 미세기공 채널에서의 계면동전기 흐름전위에 관한 실험연구)

  • 전명석;조홍일
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • The streaming potential generated by the electrokinetic flow within electric double layer of charged microchannel is applied to determine the zeta potential of hollow-fiber membrane pore by using the general Helmholtz-Smoluchowski equation. The streaming potential is know to provide a useful real-time information on the surface property and the interaction between pore and particles in actual situations and physicochemical conditions. The influence of physicochemical parameters upon the filtration with hollow-fibers has been examined with an in-situ and simultaneously monitoring the streaming potential as well as permeate flux. In particular, the present study examined an experimental method to identify the effect of cake layer which can vary according to the axial position of a hollow-fiber and the progress of membrane fouling by measuring the position-dependent streaming potential. As the latex concentration increases, the permeate flux decreased but the streaming potential increased. The growth of cake layer has been mire developed with increasing latex concentration, however, the effect of surface charges of latexes deposited on the membrane surface leads to increase the streaming potential. With increasing ionic concentration of KCI, both the permeate flux and the streaming potential decrease. The increase of ionic concentration provides a compact cake layer due to the shrinkage of Debye length and the decreased streaming potential results from the weakened ionic flows owing to a thin diffusive double layer.

Composition comparison of PM10 and PM2.5 fine particulate matter for Asian dust and haze events of 2010-2011 at Gosan site in Jeju Island (황사와 연무 시 PM10 및 PM2.5 미세먼지 조성 비교: 2010-2011년 고산지역 측정)

  • Kim, Ki-Ju;Lee, Seung-Hoon;Hyeon, Dong-Rim;Ko, Hee-Jung;Kim, Won-Hyung;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • The $PM_{10}$ and $PM_{2.5}$ samples were collected at Gosan Site of Jeju Island, and analyzed, in order to investigate the size distribution and pollution characteristics of their components. $NH{_4}{^+}$, nss-$SO{_4}^{2-}$, $K^+$, and $CH_3COO^-$ were mostly existed in fine particles. Meanwhile, $NO{_3}{^-}$ was distributed in both fine and coarse particles, and $Na^+$, $Cl^-$, $Mg^{2+}$, nss-$Ca^{2+}$ were rich in coarse particle mode. The concentrations of nss-$Ca^{2+}$ and $NO{_3}{^-}$ were increased 36.7 and 3.2 times in coarse particles, and 15.0 and 3.1 times in fine particles during the Asian Dust periods. Especially, the concentrations of crustal elemental species such as Al, Fe, Ca, K, Mg, Ti, Mn, Sr, Ba were highly increased for those periods. In the haze events, the concentrations of secondary air pollutants were increased 1.3~2.6 and 1.5~4.2 times in coarse and fine particles, respectively. Moreover, the remarkable increase of $NO{_3}{^-}$ concentration was also observed in fine particle mode. The factor analysis showed that the composition of coarse particles was influenced mainly by marine sources, followed by soil and anthropogenic sources. On the other hand, the fine particles were influenced by anthropogenic sources, followed by marine and soil sources.

The Study on the Emission Characteristics of Particulate Matters from Meat Cooking (고기구이에서 발생하는 입자상물질의 배출특성에 관한 연구)

  • Bong, C.K.;Park, S.J.;Park, S.K.;Kim, J.H.;Hwang, Y.H.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.196-201
    • /
    • 2011
  • Emission from meat cooking may contribute to the concentration of the Particulate Matters(PM) in the city. This study is to investigate the particle size and the emission characteristics of particulate matters from pork and beef cooking. The chamber was installed for sampling of PM generated from pork belly and beef sirloin cooking including seasoned ones. Cascade Impactor and Portable Aerosol Monitor (PAM) were used to analyse the particle size distribution. At the result of the Cascade Impactor sampling, particulate matters from the pork cooking was higher than that of beef. The gravimetric concentration of PM according to the size was highest at the range of $1.95{\sim}3.2{\mu}m$ and the gravimetric concentration of PM from the non-seasoned meat was higher than that of the seasoned one. The emission factors from pork, pork seasoned, beef and beef seasoned were 1.36 g/kg, 1.03 g/kg, 1.23 g/kg, 0.92 g/kg respectively. To see the result of PAM sampling, the ranges of $1.6{\sim}2.5{\mu}m$ and $2.5{\sim}3.5{\mu}m$ were reveled as highest. The ration of $PM_{2.5}/PM_{10}$ from pork and beef was 0.56~0.58. The emission factors from pork, pork seasoned, beef and beef seasoned measured by PAM were revealed as 3.37 g/kg, 2.76 g/kg, 2.93 g/kg, 2.77 g/kg respectively.