• Title/Summary/Keyword: 오염물질

Search Result 6,002, Processing Time 0.042 seconds

Decomposition of Toluene over Transition Metal Oxide Catalysts (전이금속 산화물 촉매를 이용한 톨루엔 분해)

  • Cheon, Tae-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2005
  • Toluene, which is emitted from textile process, is considered as an important hazardous air pollutant. In this study, the catalytic activity of transition metal oxides(Cu, Mn, V, Cr, Co, Ni, Ce, Sn, Fe, Sr, Cs, Mo, La, W, Zn)/${\gamma}-Al_2O_3$ catalysts was investigated to carry out the complete oxidation of toluene. The metal catalysts were characterized by XRD-ray diffraction), FE-SEM(Field Emission Scanning Electron Micrograph), BET(Brunauer Emmett Teller) method and TPR(Temperature Programmed Reduction). Among the catalysts, Cu/${\gamma}-Al_2O_3$ was highly promising catalyst for the oxidation of toluene. From the BET results, it seems that the catalytic activity is not correlated to the specific surface area. XRD results indicated that most of catalysts exist as amorphous phase. From the FE-SEM results, it was observed that copper on ${\gamma}-Al_2O_3$ surface was well dispersed among catalysts. The catalytic activity for the toluene oxidation could be explained with that metal oxide catalyst was dispersed well over supports and was attributed to reduction activity in surface of catalysts.

A Study on Combustion and Emission Characteristics of a Diesel Engine Fuelled with Pyrolysis Oil-Ethanol and Pilot Diesel (바이오원유-에탄올/파일럿 디젤유 이종연료 혼소를 통한 디젤엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Min-Jae;Lee, Seok-Hwan;Cho, Jeong-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.420-427
    • /
    • 2017
  • Recently, the depletion of fossil fuels, global warming and environmental pollution have emerged as a worldwide problem, and studies of new renewable energy sources have been progressed. Among the many renewable energy sources, the use of bio fuel has the potential to displace fossil fuels due to low price, easy to handle, and the abundant sources. Pyrolysis oil (PO) derived from waste wood and sawdust is considered an alternative fuel for use in diesel engines. On the other hand, PO is limited to diesel engines because of its low cetane number, high viscosity, high acidity, and low energy density. Therefore, to improve its poor properties, PO was mixed with alcohol fuels, such as ethanol. Early mixing with ethanol has the benefit of improving the storage and handling properties of the PO. Furthermore, a PO-ethanol blended fuel was injected separately, which can be fired through pilot-injected diesel in a dual-injection diesel engine. The experimental results showed that the substitution of diesel with blended fuel increases the amount of HC and CO, but reduces the NOx and PM significantly.

A Study of Recycling Process to Recovery Valuable Resources from Aluminum Black Dross (알루미늄 블랙드로스로부터 유가자원 회수를 위한 재활용 공정 연구)

  • Kang, Yubin;Im, Byoungyong;Kim, Dae-Guen;Lee, Chan Gi;Ahn, Byung-Doo;Kim, Yong Hwan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.61-68
    • /
    • 2018
  • The aluminum dross is oxide generated on the surface of the molten metal during the aluminum melting process and it is divided into white dross and black dross according to presence of the Salt flux. White dross has high metal content and is recycled via the melting process. Black dross is largely berried, because the it has a low metal content and difficulty in separating the components. Black dross contains a salt components such as NaCl and KCl, and inorganic materials such as $Al_2O_3$ and MgO, and it is necessary to study the technology to recover and recycle such valuable resources. In this study, a process for recycling aluminum black dross was proposed. The inorganic and soluble substances present in the black dross were separated through crushing-dissolution-solid/liquid separation-decompression evaporating. By controlling the ratio of water and black dross, the recovery condition of the separated product was optimized and we confirmed the highest Salt flux recovery efficiency 91 wt.% at black dross:water ratio 1:9. Finally, Through the synthesis of zeolite using recovered ceramic material, the materialization possibility of black dross was confirmed.

Improvement Measures of Pollutants Unit-Loads Estimation for Paddy Fields (논으로부터 배출되는 영양물질 오염부하량 원단위 산정 방법 개선 방안 검토)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Choi, Woo-Jung;Choi, Woo-Young;Joo, Seuk-Hun;Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Soo-Hyung;Kim, Dong-Ho;Chang, Nam-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • Pollutant unit load developed by Ministry of Environment (MOE) in 1995 has been a tool commonly used for water quality management and environmental policy decision. In spite of the convenience of the method in application, the shortcoming of the method has been criticized especially for nonpoint source pollution from paddy field. In this paper the estimation procedures of pollutant unit load from paddy field in the major river basins (Han, Nakdong, Geum, and Youngsan river) were investigated, and some suggestions of improvement measures of the unit-load estimation were made. The investigation showed that the distributions of rainfall, run-off, and run-off ratio, which are the most important factors affecting discharge amount of pollutants, were not similar among river basins. Such differences seemed to result in a greater unit loads estimation at Han river and at Nakdong river watersheds compared to the others. Therefore, it is not likely to be rationale to compare unit load among the watersheds without consideration of such differences. We conclude that estimation of unit-load through an intensive monitoring of pollutant discharge is crucial for better estimation of unit-load. When such an intensive monitoring is not easy due to labor and expense restriction, we suggest that unit-load should be estimated based on the storm-events which is a representative rainfall-runoff event of the area.

Mixing Analysis of Oil Spilled into the River by GPS-equipped Drifter Experiment and Numerical Modeling (GPS 부자 실험과 수치모델링에 의한 하천에 유입된 유류오염물질의 거동 해석)

  • Jang, Juhyoung;Jong, Jaehun;Mun, Hyunsaing;Kim, Kyunghyun;Seo, Ilwon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2016
  • In cases of water pollution accidents, accurate prediction for arrival time and concentration of contaminants in a river is essential to take proper measures and minimize their impact on downstream water intake facilities. It is critical to fully understand the behavior characteristics of contaminants on river surface, especially in case of oil spill accidents. Therefore, in this study, the effects of main parameters of advection and diffusion of contaminants were analyzed and validated by comparing the results of Lagrangian particle tracking (LPT) simulation of Environmental Fluid Dynamic Code (EFDC) model with those of Global Position System (GPS)-equipped drifter experiment. Prevention scenario modeling was accomplished by taking cases of movable weir operation into account. The simulated water level and flow velocity fluctuations agreed well with observations. There was no significant difference in the speed of surface particle movement between 5 and 10 layer modeling. Therefore, 5 layer modeling could be chosen to reduce computational time. It was found that full three dimensional modeling simulated wind effects on surface particle movements more sensitively than depth-averaged two dimensional modeling. The diffusion range of particles was linearly proportional to horizontal diffusivity by sensitivity analysis. Horizontal diffusivity estimated from the results of GPS-equipped drifter experiment was 0.096 m2/sec, which was considered to be valid for applying the LPT module in this area. Finally, the scenario analysis results showed that particle movements could be stagnant when discharge from the upstream weir was reduced, implying the possibility of securing time for mitigation actions such as oil boom installation and wiping oil contaminants. The outcomes of this study can help improve the prediction accuracy of particle tracking simulation to establish the most suitable mitigation plan considering the combination of movable weir operation.

Runoff Characteristics of Non-point Source Pollutants from Different Forest Types During Rainfall Events (활엽수림, 침엽수림 및 혼효림 지역의 강우시 비점오염물질 유출특성)

  • Shin, Minhwan;Shin, Dongsuk;Lee, Jaewoon;Choi, Jaewan;Won, Chulhee;Seo, Jiyeon;Choi, Yonghun;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.507-517
    • /
    • 2010
  • Long-term monitoring was conducted to identify the runoff characteristics of non-point source according to the three forest types (deciduous forest, coniferous forest and mixed forest) in this study. Rainfall events of each deciduous forest, coniferous forest, and mixed forest were 10, 8, 12, respectively. Average runoff depth and coefficients of each forest type were founded to be coniferous forest and were followed by others in turns : deciduous forest, and mixed forest because various conditions (i.e., rainfall property, Antecedent Precipitation Index (API), soil property, slope, and forest management) could change runoff characteristics. In the analysis of the first flush phenomenon, it showed that SS and T-P were sensitive for the first flush phenomenon. The first flush phenomenon of them were showed differently by rainfall intensity, rainfall duration, and amount of rainfall. The research results indicated that range of the Event Mean Concentration (EMC) values in deciduous forest were 0.8~2.4 mg/L for $BOD_5$, 2.0~13.4 mg/L for $COD_{Mn}$, 1.3~2.9 mg/L for DOC, 1.150~3.913 mg/L for T-N, 0.010~0.350 mg/L for T-P and 3.1~291.8 mg/L for SS and in coniferous forest were 0.8~2.2 mg/L for $BOD_5$, 1.9~3.6 mg/L for $COD_{Mn}$, 1.0~2.0 mg/L for DOC, 1.025~2.957 mg/L for T-N, 0.002~0.084 mg/L for T-P and 0.8~5.4 mg/L for SS. Also, range of the EMC values in mixed forest were 1.3~2.3 mg/L for $BOD_5$, 2.4~4.8 mg/L for $COD_{Mn}$, 1.1~2.1 mg/L for DOC, 0.385~2.703 mg/L for T-N, 0.016~0.080 mg/L for T-P and 2.3~30.0 mg/L for SS.

Nitrogen Removal in Column Wetlands Packed with Synthetic Fiber Treating Piggery Stormwater (축산단지 강우 유출수 처리를 위한 합성섬유충진 습지의 질소제거에 관한 연구)

  • Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.68-75
    • /
    • 2016
  • A set of lab-scale polymer synthetic fiber packed column wetlands composing three columns (CW1, CW2 and CW3) with different hydraulic regimes, recirculation frequencies and pollutant loading rates, were operated in 2012. Synthetic fiber tested as an alternative wetland medium for soil mixture or gravel which has been widely used, has very high pore size and volume, so that clogging opportunity can be greatly avoided. The inflow to the wetland was artificial stormwater. All the wetlands achieved effective removal of TSS (94%~96%), TCOD (68%~73%), TN (35%~58%), TKN (62%~73%) and NH4-N (85%~ 99%). Particularly, it was observed that COD was released from the fiber during one distinct period in all wetlands. This was probably due to the degradation of polymer fiber, and the released organic matters were found to serve as carbon source for denitrification. In addition, with longer retention time and frequent recirculation, lower effluent concentration was observed. With higher pollutant loading rate, higher nitrification and denitrification rates were achieved. However, although organic matters were released from the fiber, the lack of carbon source was still the limiting factor for the system since the release persisted only for 40 days.

Evaluation of the Performance of Woodchip-filled Infiltration Trench Treating Stormwater from Highway (고속도로 강우유출수 처리를 위한 우드칩 충진 침투도랑의 성능평가)

  • Park, Kisoo;Kang, Heeman;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.183-193
    • /
    • 2016
  • In this study, design and performance of infiltration trench using woodchip as media for treating stormwater from highway were examined through field monitoring. Average reduction efficiency for TSS, COD, BOD, TN, and TP was 88%, 94%, 85%, 80%, and 75% respectively, which is similar to values reported by other studies and design manuals even though direct comparison is not possible due to different monitoring and design conditions. Mean field infiltration rate estimated by measuring the change of water depth inside the observation well was about 40mm/hr, and the time taken for complete infiltration was about 0.83days, which corresponds well with design criteria recommended by MOE guidelines in Korea. In addition, according to analysis of infiltration rate and reduction efficiency, effective rainfall depth applied for determining water quality volume(WQv), 5mm was found to be properly established as design criteria. Woodchip must be considered and included as an alternative media together with crushed rock and gravel into the design guidelines because it has more advantages in terms of weight, porosity, cost, and easiness of management than other media materials.

Comparative Analysis of SWAT Generated Streamflow and Stream Water Quality Using Different Spatial Resolution Data (SWAT모형에서 다양한 해상도에 따른 수문-수질 모의결과의 비교분석)

  • Park, Jong-Yoon;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.102-106
    • /
    • 2008
  • This study is to evaluated the impact of varying spatial resolutions of DEM (2 m, 10 m, and 30 m), land use (QuickBird, 1/25,000 and Landsat), and soil data (1/25,000 and 1/50,000) on the uncertainty of Soil and Water Assessment Tool (SWAT) predicted streamflow, sediment, T-N, and T-P transport in a small agricultural watershed ($1.21\;km^2$). SWAT model was adopted and the model was calibrated for a $255.4\;km^2$ watershed using 30 m DEM, Landsat land use, and 1/25,000 soil data. The model was run with the combination of three DEM, land use, and soil map respectively. The SWAT model was calibrated for 2 years (1999-2000) using daily streamflow and monthly water quality (SS, T-N, T-P) records from 1999 to 2000, and verified for another 2 years (2001-2002). The average Nash and Sutcliffe model efficiency was 0.59 for streamflow and the root mean square error were 2.08, 4.30 and 0.70 tons/yr for sediment, T-N and T-P respectively. The hydrological results showed that output uncertainty was biggest by spatial resolution of land use. Streamflow increase the watershed average CN value of QucikBird land use was 0.4 and 1.8 higher than those of 1/25,000 and Landsat land use caused increase of streamflow.

  • PDF

Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion (플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산)

  • Song, Hee Gaen;Chun, Young Nam
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The use of fossil fuel and biogas production causes air pollution and climate change problems. Research endeavors continue to focus on converting methane and carbon dioxide, which are the major causes of climate change, into quality energy sources. In this study, a novel plasma-carbon converter was proposed to convert biogas into high quality gas, which is linked to photovoltaic and wind power and which poses a problem on generating electric power continuously. The characteristics of conversion and gas production were investigated to find a possibility for biogas conversion, involving parametric tests according to the change in the main influence variables, such as O2/C ratio, total gas feed rate, and CO2/CH4 ratio. A higher O2/C ratio gave higher conversions of methane and carbon dioxide. Total gas feed rate showed maximum conversion at a certain specified value. When CO2/CH4 feed ratio was decreased, both conversions increased. As a result, the production of solar fuel by plasma oxidation destruction-carbon material gasification conversion, which was newly suggested in this study, could be known as a possibly useful technology. When O2/C ratio was 0.8 and CO2/CH4 was 0.67 while the total gas supply was at 40 L min-1 (VHSV = 1.37), the maximum conversions of carbon dioxide and methane were achieved. The results gave the highest production for hydrogen and carbon dioxide which were high-quality fuel.