• Title/Summary/Keyword: 오스테나이트 상변환

Search Result 3, Processing Time 0.017 seconds

형상기억합금의 결정구조가 인장특성에 미치는 영향 연구

  • 여동진;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.93-93
    • /
    • 2004
  • 형상기억합금은 2원 또는 3원 합금에 의해 외력과 온도 변화에 따라 오스테나이트 상과 마르텐사이트 상으로의 상변환을 유발한다. 이와 같은 형상기억합금은 두 가지의 고유한 특성으로 인해 최근에는 의학용 기구나 소형 액츄에이트 및 여러 분야에서 적용되어지고 있다. 이때 형상기억합금의 고유한 특성은 모상인 오스테나이트 상의 형상을 기억하여 외력에 의해 마르텐사이트 상으로 변형된 후에도 오스테나이트 종료온도 이상으로 가열하게 되면 원래의 형상으로 되돌아가는 형상기억 효과와 오스테나이트 종료온도 이상에서 넓은 탄성 영역을 가지는 초탄성 효과 등이다.(중략)

  • PDF

Thermo-mechanical Characteristics of High Temperature NITINOL Shape Memory Alloy (고온용 NITINOL 형상기억합금의 열적/기계적 특성 평가)

  • Yun, Seong-Ho;Sridhar Krishnan;Scott R. White
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.52-59
    • /
    • 2002
  • The thermo-mechanical characteristics of high temperature NITINOL shape memory alloy were evaluated using DSC with small samples and DMA with three-point bending specimens. The shape memory alloy of 54.4Ni/45.5Ti wt.% was used so that the phase transformation temperatures were in the range of 50~11$0^{\circ}C$. Two types of sample were tested in the experiments corresponding to as-received and annealed conditions. Simple beam bending theory was used to calculate the dynamic moduli of the shape memory alloy. According to the results, a large discrepancy in transformation temperatures was found between DSC and DMA techniques. Annealing treatment was found to suppress the R-phase transformation during cooling and the secondary plateau in the austenite transformation. Such a heat treatment was also significantly influenced to raise the transformation temperatures and the moduli of the shape memory alloy.

Prediction of Microstructure and Hardness of the Ductile Cast Iron Heat-treated at the Intercritical Temperatures (임계간 온도에서 열처리한 구상흑연주철의 미세조직 및 경도 예측)

  • Nam-Hyuk Seo;Jun-Hyub Jeon;Soo-Yeong Song;Jong-Soo Kim;Min-Su Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.279-285
    • /
    • 2023
  • In order to predict the mechanical properties of ductile cast iron heat treated in an intercritical temperature range, samples machined from cast iron with a tensile strength of 450 MPa were heat-treated at various intercritical temperatures and air-cooled, after which a microstructural analysis and Brinell hardness test were conducted. As the heat treatment temperature was increased in the intercritical temperature range, the ferrite fraction in the ductile cast iron decreased and the pearlite fraction increased, whereas the nodularity and nodule count did not change considerably from the corresponding values in the as-cast condition. The Brinell hardness values of the heat-treated ductile cast iron increased gradually as the heat treatment temperature was increased. Based on the measured alloy composition, the fraction of each stable phase and the hardness model from the literature, the hardness of the ductile cast iron heat treated in the intercritical temperature range was calculated, showing values very similar to the measured hardness data. In order to check whether it is possible to predict the hardness of heat-treated ductile cast iron by using the phase fraction obtained from thermodynamic calculations, the volumes of graphite, ferrite, and austenite in the alloy were calculated for each temperature condition. Those volume fractions were then converted into areas of each phase for hardness prediction of the heat-treated ductile cast iron. The hardness values of the cast iron samples based on thermodynamic calculations and on the hardness prediction model were similar within an error range up to 27 compared to the measured hardness data.