• Title/Summary/Keyword: 예혼합기 연소

Search Result 186, Processing Time 0.02 seconds

The Study for Designs of Lean-Premixed low NOx Combustor (희박-예혼합 저 NOx 연소기 설계에 대한 연구)

  • Lim, Am-Ho;Kim, Han-Suck;Ann, Kuk-Young;Lee, Sang-Min;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.83-88
    • /
    • 2003
  • The concept of lean-premixed combustion in gas turbine combustor operation has become a standard in recent years as an effective means to meet stringent environmental standards on NOx emissions. Various types of air-fuel premixer, which affect greatly NOx emission and stability of lean-premixed low NOx combustor, were investigated experimentally to reduce the NOx emission. One type of the premixers is selected by experiments and applied it to 70kW class lean-premixed gas turbine combustor. The exit temperature and emissions of CO and NOx were measured with equivalence ratios at ambient pressure. From the results, the emissions of CO and NOx were influenced by the type of air-fuel premixer. As the mixing length of air and fuel is longer, the NOx and CO emission were decreased in the primary reaction zone. Compared with of conventional combustor, the lean-premixed low NOx combustor has low NOx emission characteristics.

  • PDF

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 1 : Linear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 1 : 선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.32-40
    • /
    • 2012
  • For predicting eigenfrequency and initial growth rate of combustion instabilities in lean premixed gas turbine combustor, linear thermoacoustic analysis model was developed in the current paper. A model combustor was selected for the model validation, which has well-defined inlet and outlet conditions and a relatively simple geometry, compared to the combustor in the previous works. Analytical linear equations for thermoacoustic waves were derived for a given combustion system. It was found that the prediction results showed a good agreement with the measurements, even though there was underestimation for instability frequencies. This underestimation was more obvious for a longer flame (i.e. wider temperature distribution) than for a shorter flame.

The Low-NOx Characteristics of Premixed Lean-Burn Gas Turbine Combustor (예혼합 희박연소 가스터빈 연소기의 저 NOx 특성)

  • Pae, H.S.;Ahn, K.Y.;Park, J.I.;Ahn, J.H.;Kim, Y.M.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.201-207
    • /
    • 1999
  • The combustion characteristics for the low NOx 50 kW-class gas turbine combustor have been experimentally investigated. In order to achieve the premixing and the lean burn combustion, the geometries of the primary zone including premixed chamber were modified from conventional combustor. The centerline profiles of CO and NO concentration, and temperature were measured for the premixed combustors with or without dilution holes in the liner. The effects of the pilot fuel injection rate and air dilution on flame stabilization and pollutant (CO, NO) emission are discussed in detail.

  • PDF

Study on combustion instabilities in gas turbine combustors (가스터빈 연소기에서의 연소 불안정 측정에 관한 연구)

  • Kim, Dae-Sik;Lee, Jong-Guen;Santavicca, Domenic
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.430-432
    • /
    • 2011
  • An experimental study of the flame response in a turbulent premixed combustor has been conducted in order to investigate mechanisms for combustion instabilities in lean premixed gas turbine combustor. A lab-scale combustor and mixing section system were fabricated to measure the flame transfer function. Measurements are made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function as a function of the modulation frequency and operating conditions.

  • PDF

Acoustic Field Analysis of a Combustor-nozzle System with a Premixing Chamber (예혼합실을 갖는 연소-노즐 시스템의 음향장 해석)

  • Yoon, Myunggon;Kim, Jina;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.46-53
    • /
    • 2017
  • This paper deals with an acoustic model for a lean premixed gas turbine combustor composed of three stages: premixing chamber, nozzle and flame tube. Our model is given as an acoustic transfer function whose input is a heat release rate perturbation and output is a velocity perturbation at a flame location. We have shown that the resonance frequencies are functions of three round-trip frequencies of acoustic wave in each stage, and area ratios between stages. By analyzing poles of the acoustic transfer function, we could characterize resonant frequencies and their dependency on various system parameters of a combustor. It was found that our analytic findings match with existing numerical and experimental results in literature.

Combustion Characteristics of Methane-Hydrogen-Air Premixture(II) (메탄-수소-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF

A Study on Soot Formation in Premixed Constant-Volume Combustion at High Pressures (高壓下의 定積 豫混合氣燃燒에 있어서 煤煙생成에 關한 硏究)

  • 임재근;배명환;김종일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.589-597
    • /
    • 1992
  • The effect of pressure on soot formation in premixed propane-air combustion is investigated at high pressures over the pressure range of 1 to 5 MPa by using a specially designed constant volume combustion bomb. The combustiom chamber of disk type with eight spark plugs located on the circumference at an interval of 45deg is 100mm in diameter by 14mm thick. The end gases are compressed to high pressures by the eight converging flames. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique, and the burnt gas temperature during the same period is measured by the two-color method. It is found that the soot yield rises with 50 to 100% for the respective equivalence ratio range of 1.9-2.2 at an interval of 0.1 when the combustion pressure is increased from 1 to 5 MPa, and that the turbulent flames decrease in the soot yield as compared with the laminar flames because the burnt gas temperatures increase with the drop of heat loss.

Large Eddy Simulation of Turbulent Premixed Flame Behavior with Dynamic Subgrid G-Equation Model (Dynamic Subgrid G-방정식을 적용한 난류 예혼합 화염의 LES 해석)

  • Park, Nam-Seob;Kim, Man-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.57-64
    • /
    • 2005
  • Large Eddy Simulation (LES) of turbulent premixed combustion flow is performed by using the dynamic subgrid scale model based on -equation describing the flame front propagation. After introducing the LES governing equations with dynamic subgrid scale (DSGS) model newly introduced into the -equation, the turbulent premixed combustion flow over backward facing step is analyzed to validate present formulation. The calculated results can predict the velocity and temperature of the combustion flow in good agreement with the experiment data.

Combustion Analysis in a Pro-Combustion Chamber Diesel Engine by Approximate Heat Release Rate (근사적 열발생율에 의한 예연소실식 디젤기관의 연소해석)

  • 왕우경
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.30-38
    • /
    • 1993
  • In this study, the combustion characteristics in a pre-combustion chamber diesel engine was investigated with experimental conditions of marine engine load. The heat release analysis used was a single-zone single-chamber thermodynamic analysis based on pre-combustion chamber pressure-time data. Based on the results of this investigation, the following conclusions were reached: 1) Increasing the load, peak pressure was increased and position of P sub(max) was retarded in crank angle degrees. 2) Ignition delay time was almost constant without relating to the load and the heat values to form a combusitible mixture were decreased apparently with increasing the load. 3) In premixed-combustion mode, the pattern of heat release rate was resembled without relating to the load and premixed-combustion time was shortened with increasing the load. 4) Increasing the load, mass of premixed-burned fuel was increased slightly, but was invariable beyond a certain fuel-air ratio. 5) Increasing the load, premixed-burned fraction was decreased.

  • PDF

Characteristics of Multi staged Combustion on a Double-cone Partial Premixed Nozzle (이중 콘형 부분 예혼합 GT 노즐의 다단 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Experimental investigations were conducted to understand the multi-staged combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Multi-staged combustion is implemented by injecting the fuel through the existing manifold of the side slots as well as through the apex of the cone with two fuel injection angles which are slanted or axial. NOx and CO emissions, and wall temperature distributions were measured for various fuel distributions and operating conditions. Results show that NOx emissions are decreased when the fuel distribution to the apex is 3% of the total amount of fuel, which is due to more uniform fuel distribution inside the nozzle, hence less hot spots at the flame. NOx emissions are rather increased when the fuel distribution to the apex is 8% of the total amount of fuel for axial fuel injection by occurrence of flash back in premixing zone of burner.