• Title/Summary/Keyword: 예혼합기

Search Result 249, Processing Time 0.022 seconds

A Study on Numerical Modeling of Swirl-Premix Burners for Simulation of Gas Turbine Combustion (가스터빈 연소기의 연소장 해석을 위한 스월 예혼합 버너의 수치적 모델링에 관한 연구)

  • Baek, Gwangmin;Sohn, Chae Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.197-198
    • /
    • 2012
  • Efficient numerical analysis of combustion induced by premixed swirl multi-burners in a gas turbine combustor is conducted by adopting swirler model. By analyzing the internal recirculation zone, the inner and outer diameters of the swiler are determined to be 28 mm and 76mm to 28mm, respectively. Tangential velocity of 35m/s is determined from swirl and recirculation angles. With swirler model adopted, the predicted temperature of combustion gas agrees well with that from single-burner calculation without the model. But, NOx emission is underestimated by 60 %.

  • PDF

THE CATALYTICALLY SUPPORTED COMBUSTOR FOR LEAN MIXTURE (촉매에 의해 안정화된 희박 예혼합기의 연소)

  • Seo, Yong-Seok;Gang, Seong-Gyu;Sin, Hyeon-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.59-67
    • /
    • 1998
  • The aim of this study is to investigate advantages that the catalytically supported combustor can have. For this purpose, the catalytic combustor was prepared which consisted of the catalyst bed and the thermal combustor at the downstream of the catalyst bed. The catalyst bed consisted of two-stage. Pd catalyst was installed in the first stage of the catalyst bed, and Pt catalyst was placed in the second stage. Results showed that the catalytically supported combustion had some advantages. One was that auto-ignition occurred in the thermal combustor. This can give merit that an igniter is not necessary to start flame ignition. Other was that the catalytically supported combustion was stable for lean mixture. When combustion of lean mixture was not supported by surface reaction it became unstable so that big combustion noise was created. Therefore, it is desirable to support flame by catalytic surface reaction to obtain the stable combustion of lean mixture.

  • PDF

Flame Dynamic Response to Inlet Flow Perturbation in a Turbulent Premixed Combustor (난류 예혼합 연소기에서의 흡입 유동 섭동에 대한 화염의 동적 거동)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.48-53
    • /
    • 2009
  • This paper describes the forced flame response in a turbulent premixed gas turbine combustor. The fuel was premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. To impose the inlet flow velocity, a siren type modulation device was developed using an AC motor, rotating and static plates. Measurements were made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The test results showed that flame length as well as geometry was strongly dependent upon modulation frequency in addition to operating conditions such as inlet velocity. Convection delay time between the velocity perturbation and heat release fluctuations was calculated using phase information of the transfer function, which agreed well with the results of flame length measurements. Also, basic characteristics of the flame nonlinear response shown in the current test conditions were introduced.

  • PDF

Combustion Characteristics According to the Equivalence Ratio of Hydrocarbon Fuel/Air Premixture Excited by Ultrasonic Standing Wave (정상초음파가 인가된 탄화수소계 연료/공기 혼합물의 당량비에 따른 연소특성)

  • Kim, Min Cheol;Bae, Seong Hun;Hong, Joon Yeol;Kim, Jeong Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.628-631
    • /
    • 2017
  • An experimental study of the combustion characteristics according to the equivalence ratio of hydrocarbon fuel/air premixture excited by ultrasonic standing wave are presented. The image of the propagating flame was acquired using a high-speed camera, and the combustion characteristics of each fuel were closely observed through image processing. it was conformed that ultrasonic standing wave has been found to stimulate the combustion reaction in the stoichiometric ratio.

  • PDF

Analysis of Combustion Oscillation and its Suppression in a Silo Type Gas Turbine Combustor (Silo 형 가스터빈 연소기에서 발생하는 연소진동 분석 및 저감)

  • Seo, Seok-Bin;Ahn, Dal-Hong;Cha, Dong-Jin;Park, Jong-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.2
    • /
    • pp.126-130
    • /
    • 2009
  • The present study describes an investigation into the characteristics of combustion oscillation and its suppression instability of a silo type gas turbine combustor in commercial power plant. Combustion oscillation is occurred the combustor in near full load during operation. As a result of FFT analysis of the combustion dynamics, the frequency of the oscillation is analyzed as the 1'st longitudinal mode of acoustic resonance of the combustor. For suppress of the instability, combustion tuning with adjust of fuel valve schedule is carried out, which changes equivalent ratio of each burners. As the result, the oscillation is successfully reduced with meeting the level of NOx emission regulation.

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

Reduction of Lean VOC Emission by Reforming with a Rotating Arc Plasma and Combustion with a Turbulent Partially-Premixed Flame (난류 부분예혼합화염과 로테이팅 아크 플라즈마를 이용한 난연성 유증기의 연소처리)

  • Ahn, Taekook;Lee, Daehoon;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2017
  • Large-scale fuel tanks emit massive amount of hardly-combustible VOC mixtures which are light hydrocarbon species in dilution with nitrogen and carbon dioxide. We have developed a lab-scale burner to combust those VOC mixtures by use of a turbulent partially-premixed flame as a pilot flame. For a higher HC treatment ratio, the mixture gases were reformed by a rotating arc plasma device. The results showed that the nitrogen mole fraction and the injecting speed of the VOC mixture influence on the performance of the burner. It was also found that the size of the pilot flame and the power supplied to the plasma device determine the overall HC treatment ratio and the concentrations of CO and NOx in the exhaust gas.

Utilization and Visualization of Turbulent Partially-premixed Flame for Combustion of Inert-gas-diluted VOC (유증기 연소처리를 위한 난류 부분예혼합화염의 활용 및 유동장 가시화)

  • Ahn, Taekook;Nam, Younwoo;Park, Sunho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.193-196
    • /
    • 2015
  • Combustion of low concentration VOC in inert gas around the flammability limit has been experimentally studied. Streams of nitrogen and propane mixture with various compositions and flow conditions were treated by a turbulent partially-premixed pilot flame. HC and CO contents in exhaust gas measured and the flow patterns were visualized. The results suggested that there exists an optimal mixture velocity range for efficient combustion treatment for each flow condition and composition of the mixture.

  • PDF

A Process Study on the Cavities by Cave landform Deformation (동굴내부(洞窟內部)의 지형변형(地形變形)에 의한 동공(洞空)의 발달과정(發達過程) 연구(硏究))

  • Oh, Jong-Woo
    • Journal of the Speleological Society of Korea
    • /
    • no.88
    • /
    • pp.51-62
    • /
    • 2008
  • 동굴내부의 지형변형은 동굴내의 외인적인 요인과 내인적인 요인에 의하여 발달된다. 외인적인 요인으로서 기후변동에 의한 기온의 변화와 침출수의 증감 및 외부 이입물질 등을 들 수 있으며, 내인적인 요인으로서는 암석의 공극율, 지질환경, 단층 및 습곡면의 형상, 절리 및 균열면의 유무, 동굴지천의 구배 및 유속, 층리간의 이종의 암석게재 여부 등을 들 수 있다. 동굴 시스템은 수문 물리화학적 요소에 의해 형성되며 외부 기준면 통제에 의해서 암석학, 구조학, 기후학, 생물학, 토양학 등과 밀접한 상태에서 의존적인 발달 과정을 가진다. 동혈 내부의 침식은 유수의 입력 경우 유출과정에서 형성되며, 또한 유수의 비 입력 경우유출 및 액체용액의 분출에 의해서 형성된다. 다수의 동굴학자들은 동굴은 계절마다 침수되거나 빨리 흐르는 홍수에 의한 폭우에 의해 epiphreatic 상태에서 간헐적으로 포화되는 과정을 거치며 선택적으로 발달한다고 주장하고 있다. 혼합지대 동굴의 가장 좋은 예는 현재의 카르스트 지역에서 나타나는 것이 아니라 과거 제4기의 200만년전 동안보다 해수면이 더 안정적이었던 때에 이루어진 고 카르스트(Paleo Karst)에서 발견되고 있다.

Onset condition of the combustion-driven sound in a surface burner (표면 연소기의 연소진동음의 발생조건)

  • Kwon, Y.P.;Lee, J.W.;Lee, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.221-228
    • /
    • 1997
  • A strong combustion-driven sound from a surface burner made of a perforated metal fiber plate for premixed gas was investigated to clarify the physical mechanism of its generation. A simple model was developed for the acoustic power generation in terms of the heat transfer response function and the acoustic impedance of the burner. The acoustic impedance of the perforated metal fiber placed on the open exit was measured and the heat release response of the burner to the oscillating flow associated with the acoustic disturbance was expressed in terms of a response function. It was found that the power is generated by the heat release in response to the downstream particle velocity, in contrast to the upstream velocity in the case of the Rijke oscillation driven by a heater placed in the lower half of a columm with upstream flow. The measured frequencies of the oscillation were in agreement with the estimated resonance frequencies and their excitation was varied with the combustion conditions. For the same fuel rate, the excited frequency increases with the air ratio if it is low but decreases with the ratio if not so low. Such frequency characteristics were explained by assuming a heat release response function with a time constant and it was shown that the excited frequency decreases as the time constant increases.

  • PDF