• Title/Summary/Keyword: 예측 인자

Search Result 2,402, Processing Time 0.033 seconds

Analysis of Risk factors & Morphological Ultrasound Image for Gallbladder Polyp in Adults Living in Busan and Gyeongnam Provinces (부산·경남 지역 성인의 담낭용종 위험인자 및 초음파 영상의 형태학적 분석)

  • An, Hyeon;Hwang, Chul-Hwan;Ko, Sung-Jin;Kim, Chang-Soo
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.353-359
    • /
    • 2016
  • This study were to evaluate risk factors of GB polpy in Busan and Gyeongnam area. This study was performed with patients by abdominal ultrasonography among the patients who came to the P hospital from January to May 2016. Among them, risk factors were analyzed on 399 people at the same time when abdominal ultrasonography and hematological test. The statistical analysis of risk factors related to the GB ployp was performed by independent t-test and chi-square test. In consider of difference verification result for calculations odds ratio about independent variables, multiple logistic regression analysis to conduct verify adequacy by calculating forecasting model from variable. As a result, GB polyp risk factors have relevance to male, HBsAg positive, triglyceride. GB polyp risk factors confirmed to male, HBsAg positive, triglyceride were calculated forecasting model and forecasting probability value. Forecasting probability sensitivity 61.0%, specificity 76.8%, ROC area under curve 0.735 showed, it confirmed validity of forecasting model. When analyzing the GB polyps morphologically, among the GB polyp types observed from abdominal ultrasonography, the hyperechoic and homogeneous pattern with neck was the largest as shown from 27.5% and two GB polyps were shown most from 38%, sizes were shown most by maximum diameter, 5 to 10mm from 53%. As a disease accompany with GB polyp showed mild fatty liver(23%), diffuse hepatopathy(21%).

A Study on the Prediction Model of Unmanned Helicopter Fuel Consumption for the Captive Flight Test (탑재비행시험을 위한 무인헬기 연료 소모량 예측모형 연구)

  • Kim, Jisu
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.7
    • /
    • pp.436-443
    • /
    • 2019
  • The purpose of this paper is to establish a predictive model by analyzing the influence and correlation of factors affecting the fuel consumption of unmanned helicopters in Captive Flight Test. In this study, a four-factor two-level full factorial experiment was designed and tested using the design of experiments, results were analyzed to derive the main effects and interactions of the factors, and the predictive model was established through regression analysis. It is expected that the results from this study contribute to carrying out Captive Flight Test efficiently and the improvement of the test capability of Electronic Testing Range.

The Predictive Factors of Olfactory Changes after Endoscopic Sinus Surgery (부비동 내시경 수술 후 후각변화에 대한 예측 인자)

  • Ye, Mi Kyung
    • Journal of Rhinology
    • /
    • v.25 no.2
    • /
    • pp.63-68
    • /
    • 2018
  • Olfactory dysfunction is one of the most common complaints of patients with chronic rhinosinusitis. Patients who suffer from olfactory dysfunction report a negative effect on their overall quality of life. Chronic rhinosinusitis-related olfactory impairment is the most treatable form of olfactory disorder; however, outcomes after endoscopic sinus surgery (ESS) are challenging to predict. Previous studies have documented a wide range in overall improvement after ESS. The purpose of this study is to review the factors that predict changes in olfaction after ESS.

Improving Probability of Precipitation of Meso-scale NWP Using Precipitable Water and Artificial Neural Network (가강수량과 인공신경망을 이용한 중규모수치예보의 강수확률예측 개선기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1027-1031
    • /
    • 2008
  • 본 연구는 한반도 영역을 대상으로 2001년 7, 8월과 2002년 6월로 홍수기를 대상으로 RDAPS 모형, AWS, 상층기상관측(upper-air sounding)의 자료를 이용하였다. 또한 수치예보자료를 범주적 예측확률로 변환하고 인공신경망기법(ANN)을 이용하여 강수발생확률의 예측정확성을 향상시키는데 있다. 신경망의 예측인자로 사용된 대기변수는 500/ 750/ 1000hpa에서의 지위고도, 500-1000hpa에서의 층후(thickness), 500hpa에서의 X와 Y의 바람성분, 750hpa에서의 X와 Y의 바람성분, 표면풍속, 500/ 750hpa/ 표면에서의 온도, 평균해면기압, 3시간 누적 강수, AWS관측소에서 관측된 RDAPS모형 실행전의 6시간과 12시간동안의 누적강수, 가강수량, 상대습도이며, 예측변수로는 강수발생확률로 선택하였다. 강우는 다양한 대기변수들의 비선형 조합으로 발생되기 때문에 예측인자와 예측변수 사이의 복잡한 비선형성을 고려하는데 유용한 인공신경망을 사용하였다. 신경망의 구조는 전방향 다층퍼셉트론으로 구성하였으며 역전파알고리즘을 학습방법으로 사용하였다. 강수예측성과의 질을 평가하기 위해서 $2{\times}2$ 분할표를 이용하여 Hit rate, Threat score, Probability of detection, Kuipers Skill Score를 사용하였으며, 신경망 학습후의 강수발생확률은 학습전의 강수발생확률에 비하여 한반도영역에서 평균적으로 Kuipers Skill Score가 0.2231에서 0.4293로 92.39% 상승하였다.

  • PDF

Prediction model of plasma deposition process using genetic algorithm and generalized regression neural network (유전자 알고리즘과 일반화된 회귀신경망을 이용한 플라즈마 증착공정 예측모델)

  • Lee, Duk-Woo;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1117-1120
    • /
    • 2004
  • 경제적인 공정분석과 최적화를 위해서는 컴퓨터를 이용한 플라즈마 예측모델이 요구되고 있다. 본 연구에서는 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마 증착공정 모델을 개발한다. GRNN의 예측성능은 패턴층 뉴런의 가우시안 함수를 구성하는 학습인자, 즉 spread에 의존한다. 종래의 모델에서는 모든 가우시안 함수의 spread가 동일한 값에서 최적화되었으며, 이로 인해 모델의 예측성능을 향상시키는 데에는 한계가 있었다. 본 연구에서는 유전자 알고리즘 (GA)를 이용하여 다변수 spread를 최적화하는 기법을 개발하였으며, 그 성능을 PECVD 공정에 의해 증착된 SiN 박막의 증착률에 적용하여 평가하였다. $2^{6-1}$ 부분인자 실험계획법에 의해 수집된 데이터를 이용하여 신경망을 학습하였고, 모델적합성 점검을 위해 별도의 12번의 실험을 수행하였다. 가우시안 함수의 spread는 0.2에서 2.0까지 0.2간격으로 증가시켰으며, 최적화한 GA-GRNN모델의 예측성능은 6.6 ${\AA}/min$이었다. 이는 종래의 방식으로 최적화한 모델의 예측성능 (13.5 ${\AA}/min$)과 비교하여 50.7% 향상된 예측성능이며, 이러한 향상은 제안한 GA-GRNN 모델이 플라즈마 공정 모델의 예측성능을 증진하는데 매우 효과적임을 보여준다.

  • PDF

Predicting Forest Fire in Indonesia Using APCC's MME Seasonal Forecast (MME 기반 APCC 계절예측 자료를 활용한 인도네시아 산불 예측)

  • Cho, Jaepil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.7-7
    • /
    • 2016
  • 인도네시아 산불에 의한 연무는 동남아시아 인접한 국가들에 있어서 심각한 환경문제 중 하나이다. 국제적으로 심각한 문제를 야기하는 인도네시아의 산불은 건조기에 강수량이 적게 내리는 극심한 가뭄 조건에서 발생한다. 건조기 강수량을 모니터링 하는 것은 산불 발생 가능성을 예측하기 위해 중요하지만 산불을 사전에 예방하고 영향을 최소화하기에는 부족하다. 따라서 산불에 대한 선제적 사전예방을 위해서는 수개월의 선행예측 기간을 갖는 조기경보 시스템이 절실하다. 따라서 본 연구는 인도네시아 산불에 대한 선제적 대응을 위한 강수량 예측시스템을 개발하고 예측성을 평가하여 동남아시아 지역의 화재 연무 조기경보 시스템의 시제품(Prototype)을 개발하는데 있다. 강수량 예측을 위해서 APEC 기후센터의 계절예측정보의 활용 정도에 따라서 4가지 서로 다른 방법을 통합하여 사용하였다. 예측정보 기반의 방법들로는 대상지역의 강수량 예측을 위해서 대상 지역 상공의 계절예측 강수자료를 보정을 통해 직접적으로 사용하는 SBC (Simple Bias Correction) 방법과 대상 지역 상공의 강수 예측자료를 사용하는 대신에 지역 강수량과 높은 상관 관계를 보이는 다른 지역의 대리변수를 예측인자로 사용하는 MWR (Moving Window Regression) 방법이 있다. 또한 예측자료의 사용 없이 과거자료 기반의 기후지수(Climate Index) 중에서 지체시간을 고려하여 지역 강수량과 높은 상관관계를 갖는 경우 예측에 활용하는 관측자료 기반의 CIR (Climate Index Regression) 방법과 예측기반 MWR과 관측기반의 CIR 방법에서 선정된 예측인자를 동시에 활용하는 ITR (Integrated Time Regression) 방법이 사용되었다. 장기 강수량 예측은 보르네오 섬의 4개 지역에서 3개월 이하의 선행예측기간에 대하여 0.5 이상의 TCC (Temporal Correlation Coefficient)의 값을 보여 양호한 예측성능을 보였다. 예측된 강수량 자료는 위성기반 관측 강수량 및 관측 탄소 배출량 관계에서 결정된 강수량의 임계값과의 비교를 통해 산불발생 가능성으로 환산하였다. 개발된 조기경보 시스템은 산불 발생에 가장 취약한 해당지역의 건조기(8월~10월) 강수량을 4월부터 예측해 산불 연무에 대한 조기경보를 수행한다. 개발된 화재 연무조기경보 시스템은 지속적인 개선을 통해 현장 실효성을 높여 동남아국가 정부의 화재 및 산림관리자들에게 보급함으로써 동남아의 화재 연무로 인한 환경문제 해결에 기여할 수 있으리라 판단된다.

  • PDF

CIGS 태양전지용 박막 진공 증발/증착 예측 기술 연구

  • Kim, Jeong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.215.1-215.1
    • /
    • 2013
  • 박막형 태양 전지 중 CIGS 태양 전지는 생산성 및 효율성 면에서 많은 연구가 이루어지고 있다. 또한 대면적 생산을 위한 연구도 활발하게 이루어지고 있다. 효율 향상을 위한 인자 중 박막의 두께균일도가 주요한 영향 인자 중 하나라고 보고되고 있다. 증착도 예측을 위한 시뮬레이션 기법에 대해 논할 것이다. 박막형 CIGS 태양 전지 증발/증착 균일도 향상을 위한 시뮬레이션을 통하여 실험과 유사한 결과값을 도출할 수 있었다. 이를 통하여 박막의 균일도 향상의 방법론을 제시할 것이다.

  • PDF

가압경수로 노심관리를 가연성독물질 성능비교

  • 조진영;장창선;정구영;이정훈;김창효
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.191-196
    • /
    • 1996
  • 이 논문에서는 Gadolinia, Erbia, IFBA를 비교평가 대상 독물질로 선정하여, 영광 3/4호기 노심을 대상으로 주기길이별 독봉장전노심을 구성하여 노심핵특성인자들을 비교평가하였다. 주기길이측면에서 Gd 장전노심과 IFBA 장전노심이 비슷하게 예측되었으며 Erbia 장전노심이 약 10∼13일 정도 작게 예측되었다. 냉각재 온도계수 측면에서는 Erbia 장전노심의 타 독물질 장전노심에 비해 우수하게 평가되었다. 최대 Fr 인자 측면에서는 Erbia 장전노심과 IFBA 장전노심이 거의 비슷한 수준에서 우수하게 평가되었으며 Gd 장전노심은 이 측면에서 취약한 것으로 평가되었다.

  • PDF

Predictions of PD-L1 Expression Based on CT Imaging Features in Lung Squamous Cell Carcinoma (편평세포폐암에서 CT 영상 소견을 이용한 PD-L1 발현 예측)

  • Seong Hee Yeo;Hyun Jung Yoon;Injoong Kim;Yeo Jin Kim;Young Lee;Yoon Ki Cha;So Hyeon Bak
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.394-408
    • /
    • 2024
  • Purpose To develop models to predict programmed death ligand 1 (PD-L1) expression in pulmonary squamous cell carcinoma (SCC) using CT. Materials and Methods A total of 97 patients diagnosed with SCC who underwent PD-L1 expression assay were included in this study. We performed a CT analysis of the tumors using pretreatment CT images. Multiple logistic regression models were constructed to predict PD-L1 positivity in the total patient group and in the 40 advanced-stage (≥ stage IIIB) patients. The area under the receiver operating characteristic curve (AUC) was calculated for each model. Results For the total patient group, the AUC of the 'total significant features model' (tumor stage, tumor size, pleural nodularity, and lung metastasis) was 0.652, and that of the 'selected feature model' (pleural nodularity) was 0.556. For advanced-stage patients, the AUC of the 'selected feature model' (tumor size, pleural nodularity, pulmonary oligometastases, and absence of interstitial lung disease) was 0.897. Among these factors, pleural nodularity and pulmonary oligometastases had the highest odds ratios (8.78 and 16.35, respectively). Conclusion Our model could predict PD-L1 expression in patients with lung SCC, and pleural nodularity and pulmonary oligometastases were notable predictive CT features of PD-L1.

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.