• 제목/요약/키워드: 예측 성능

검색결과 6,657건 처리시간 0.036초

기온 데이터를 반영한 전력수요 예측 딥러닝 모델 (Electric Power Demand Prediction Using Deep Learning Model with Temperature Data)

  • 윤협상;정석봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.307-314
    • /
    • 2022
  • 최근 전력수요를 예측하기 위해 통계기반 시계열 분석 기법을 대체하기 위해 딥러닝 기법을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 전력수요 예측 연구 결과를 분석한 결과, LSTM 기반 예측 모델의 성능이 우수한 것으로 규명되었으나 장기간의 지역 범위 전력수요 예측에 대해 LSTM 기반 모델의 성능이 충분하지 않음을 확인할 수 있다. 본 연구에서는 기온 데이터를 반영하여 24시간 이전에 전력수요를 예측하는 WaveNet 기반 딥러닝 모델을 개발하여, 실제 사용하고 있는 통계적 시계열 예측 기법의 정확도(MAPE 값 2%)보다 우수한 예측 성능을 달성하는 모델을 개발하고자 한다. 먼저 WaveNet의 핵심 구조인 팽창인과 1차원 합성곱 신경망 구조를 소개하고, 전력수요와 기온 데이터를 입력값으로 모델에 주입하기 위한 데이터 전처리 과정을 제시한다. 다음으로, 개선된 WaveNet 모델을 학습하고 검증하는 방법을 제시한다. 성능 비교 결과, WaveNet 기반 모델에 기온 데이터를 반영한 방법은 전체 검증데이터에 대해 MAPE 값 1.33%를 달성하였고, 동일한 구조의 모델에서 기온 데이터를 반영하지 않는 것(MAPE 값 2.31%)보다 우수한 전력수요 예측 결과를 나타내고 있음을 확인할 수 있다.

주단위 지하수위 예측 모의를 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로 (Assessing the Utility of Rainfall Forecasts for Weekly Groundwater Level Forecast in Tampa Bay Region, Florida)

  • 황세운;아세파 터루소;장승우
    • 한국농공학회논문집
    • /
    • 제55권6호
    • /
    • pp.1-9
    • /
    • 2013
  • 미래 기후 정보를 이용한 수문 환경의 단기 미래 예측은 안정적 수자원 공급을 위한 필수적 과제이다. 미국 플로리다 주 중서부 템파지역에서는 주요 수자원 중 하나인 지하수의 효과적 활용을 위해 지하수위 인공신경망 모델 (GWANN)을 개발하여 피압 대수층과 비피압 대수층에 대한 주 단위 평균 지하수위를 월별로 예측하고 그 결과를 수자원 공급 의사 결정에 반영하고 있다. 본 논문은 템파지역에 대한 GWANN 모델을 이용한 지하수위 예측 시스템을 소개하고 모델의 기후 입력 자료의 민감도를 분석함으로써 양질의 기후 정보에 대한 현 시스템의 활용성을 검토하였다. 2006년과 2007년에 대한 연구 결과, 관측 자료를 최적 예측 시나리오 (the best forecast)로 가정하여 적용한 결과는 지하수위 관측 지점에 따라 큰 차이를 보였지만 일반적으로 현 시스템 (현 시점의 실시간 주 단위 평균 강우량을 향후 4주간 동일하게 적용함) 에 비해 예측 성능이 개선되는 것으로 나타났다. 더불어 강우 관측 자료의 백분위 (percentile forecast; 20분위, 50분위, 80분위)를 강우 예측 자료로 활용한 경우에도 현 시스템과 비교하여 일부 나은 결과를 보여주었다. 그러나 지하수위 예측 모델을 활용하지 않고 현 시점의 지하 수위가 지속된다고 가정하는 경우 (na$\ddot{i}$ve model) 향후 2주간의 예측 결과가 best forecast 경우에 비해 높은 정확도를 보이는 등, GWANN 모델의 단기 예측에 대한 양질의 강우 예측 정보의 활용성은 낮으며, 향후 3주 이상에 대한 예측 성능에 있어 best forecast결과가 na$\ddot{i}$ve model 결과에 비해 높은 정확도를 보이기 시작하는 것으로 나타났다. 또한 GWANN 모델의 예측 성능은 적용 기간과 지역 및 지하대수층의 특성에 따라 큰 다양성을 가지는 단점을 보여 강우 예측 자료 활용에 앞서 모델 개선의 필요성이 있다고 판단된다. 본 연구는 단기수자원 공급 계획 수립을 위하여 사용되는 지역 모델링 시스템에 대한 기후 예측정보의 활용성 평가를 위한 방법론으로 고려될 수 있을 것으로 기대된다.

분기 선예측과 개선된 BTB 구조를 사용한 분기 예측 지연시간 은폐 기법 (Branch Prediction Latency Hiding Scheme using Branch Pre-Prediction and Modified BTB)

  • 김주환;곽종욱;전주식
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.1-10
    • /
    • 2009
  • 현대의 프로세서 아키텍처에서 정확한 분기 예측은 시스템의 성능에 지대한 영향을 끼친다. 최근의 연구들은 예측 정확도뿐만 아니라, 예측 지연시간 또한 성능에 막대한 영향을 끼친다는 것을 보여준다. 하지만, 예측 지연시간은 간과되는 경향이 있다. 본 논문에서는 분기 예측지연시간을 극복하기 위한 분기 선예측 기법을 제안한다. 이 기법은 분기장치를 인출 단계에서 분리함으로써, 분기 예측기가 명령어 인출 장치로부터의 아무런 정보도 없이 스스로 분기 예측을 진행 가능하게 한다. 또한, 제안된 기법을 지원하기 위해, BTB의 구조를 새롭게 개선하였다. 실험 결과는 제안된 기법이 동일한수준의 분기 예측정확도를 유지하면서, 대부분의 예측지연시간을 은폐한다는 것을 보여준다. 더욱이 제안된 기법은 항상 1 싸이클의 예측 지연시간을 가지는 이상적인 분기 예측기를 사용한 경우보다도 더 나은 성능을 보여준다. 본 논문의 실험 결과에 따르면, 기존의 방식과 비교했을 때, 최대 11.92% 평균 5.15%의 IPC 향상을 가져온다.

고성능 마이크로프로세서에서 값 예측기의 성능평가 (Performance Evaluation of Value Predictor in High Performance Microprocessors)

  • 전병찬;김혁진;류대희
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권2호
    • /
    • pp.87-95
    • /
    • 2005
  • 고성능 마이크로프로세서에서 값 예측기는 한 명령어의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallelism, ILP)을 향상시키는 기법이다. 본 논문에서는 ILP 프로세서 명령어 수준 병렬성의 성능향상을 위하섞 값을 미리 예측하여 병렬로 이슈하고 수행하는 값 예측기를 비교 분석하여 각 테이블 갱신 시점에 따른 예측기별 평균 성능향상과 예측률 및 예측정확도를 측정하여 평가한다 이러한 타당성을 검증하기 위해 실행구동방식 시뮬레이터를 사용하여 SPECint95 벤치마크를 시뮬레이션하여 비교한다.

  • PDF

슈퍼스칼라 프로세서에서 동적 분류를 사용한 하이브리드 결과 값 예측기 (A Hybrid Value Predictor using Dynamic Classification in Superscalar Processors)

  • 신영호;윤성룡;박흥준;이원모;김주익;조영일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.544-549
    • /
    • 2000
  • 슈퍼스칼라 프로세서의 성능을 향상시키기 위해서는 데이터 종속성에 의한 장애를 제거해야 한다. 최근 여러 논문들은 이러한 데이터 종속성을 제거하기 위해서 명령의 결과 값을 예상하는 메커니즘이 연구되고 있다. 결과 값 예상 메커니즘 중 여러 예측기를 하이브리드해서 사용하는 방법은 각각 하나의 예측기만을 사용하는 방법보다 더 좋은 성능을 얻을 수 있다. 그러나 종전의 하이브리드 예측기는 명령어를 중복해서 저장하여 많은 하드웨어 크기를 요구한다. 본 논문에서는 여러 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 또한 예상하기 어려운 명령어를 동적으로 찾아내어 예상하지 않음으로서 잘못 예상한 misprediction 페널티를 줄이고 예상 정확도를 높인다. 시뮬레이션 결과 SPECint95 벤치마크 프로그램에 대해 제안한 하이브리드 예측기에서 예측율은 평균 79%에서 90%로 향상하였고, misprediction rate는 평균 12%에서 2%로 낮추었다

  • PDF

시계열 모형을 활용한 일사량 예측 연구 (Solar radiation forecasting by time series models)

  • 서유민;손흥구;김삼용
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.785-799
    • /
    • 2018
  • 신재생에너지 산업이 발전함에 따라 태양광 발전에 대한 중요성이 확대되고 있다. 태양광 발전량을 정확히 예측하기 위해서는 일사량 예측이 필수적이다. 본 논문에서는 태양광 패널이 존재하는 청주와 광주 지역을 선정하여 기상포털에서 제공하는 시간별 기상 데이터를 수집하여 연구하였다. 일사량 예측을 위하여 시계열 모형인 ARIMA, ARIMAX, seasonal ARIMA, seasonal ARIMAX, ARIMA-GARCH, ARIMAX-GARCH, seasonal ARIMA-GARCH, seasonal ARIMAX-GARCH 모형을 비교하였다. 본 연구에서는 모형의 예측 성능을 비교하고자 mean absolute error와 root mean square error를 사용하였다. 모형들의 예측 성능 비교 결과 일사량만 고려하였을 때는 이분산 문제를 고려한 seasonal ARIMA-GARCH 모형이 우수한 성능을 나타냈고, 외생변수를 활용한 ARIMAX 모형으로 일사량 예측을 한 경우가 가장 좋은 예측력을 나타냈다.

딥러닝을 이용한 하천 유량 예측 알고리즘 (Groundwater Level Prediction using ANFIS Algorithm)

  • 박귀만;오세랑;박근호;배영철
    • 한국전자통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1239-1248
    • /
    • 2021
  • 본 논문은 학문적인 이해를 기반을 둔 예측을 수행하기 위해 FDNN(: Flood drought index neural network) 알고리즘을 제시한다. 데이터에 의존한 예측이 아닌 학문적인 이해를 기반을 둔 예측을 딥러닝에 적용하기 위해, 알고리즘을 수리, 수문학을 기반으로 구성하였다. 강수량의 입력으로 하천의 유량을 예측하는 모델을 구성하여 K-교차검증을 통해 모델의 성능을 측정한다. 제시한 알고리즘의 성능을 증명하기 위해 시계열 예측에서 가장 많이 사용되는 LSTM(: Long short term memory) 알고리즘의 예측 성능과 비교하여 제시한 알고리즘의 우수성을 나타낸다.

R에서 자동화 예측 함수에 대한 성능 비교 (Performance comparison for automatic forecasting functions in R)

  • 오지우;성병찬
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.645-655
    • /
    • 2022
  • 본 논문에서는 R에서 시계열 자료 예측을 위한 자동화 함수에 대하여 고찰하고 그 예측 성능을 비교합니다. 대표적인 시계열 예측 방법인 지수 평활 모형과 ARIMA (autoregressive integrated moving average) 모형을 대상으로 하였으며, 이들의 모형화 및 예측 자동화를 가능하게 하는 R의 4가지 자동화 함수인 forecast::ets(), forecast::auto.arima(), smooth::es()와 smooth::auto.ssarima()를 대상으로 하였습니다. 이들의 예측 성능을 비교하기 위하여 3,003가지의 시계열로 구성되어 있는 M3-Competition자료와 3가지의 정확성 척도를 사용하였습니다. 4가지 자동화 함수는 모형화의 다양성 및 편리성, 예측 정확도 및 실행 시간 등에서 각자 장단점이 있음을 확인하였습니다.

위성통신 시스템에서 강우 감쇠 보상을 위한 알고리즘 (Algorithms for Rain-Attenuation Compensation in Satellite Communication System)

  • 임광재;권태곤;유문희
    • 한국통신학회논문지
    • /
    • 제25권11A호
    • /
    • pp.1642-1651
    • /
    • 2000
  • 위성통신시스템에서의 10GHz이상의 Ku 또는 Ka 대역은 수십 dB의 크기를 갖는 강우에 의한 감쇠 현상이 심각하여 이러한 감쇠는 위성 링크의 심각한 성능 정하를 가져온다. 본 논문은 위성통신 링크 상에서의 강우 감쇠 보상을 위한 알고리즘을 제시하고, Ku 대역의 강우 감쇠 데이터를 사용한 시뮬레이션을 통하여 그 성능을 비교 분석하였다. 예측 기법 측면에서, 적응형 알고리즘을 적용한 기법과 신호 레벨 변화량에 근거한 예측 기법은 거의 동일한 예측 오차를 보였고, 따라서, 급속한 신호레벨 변화에 적응성을 요하지 않은 강우 감쇠 예측의 경우, 알고리즘 측면에서 비교적 간단한 예측 기법으로도 충분한 성능을 얻을 수 있음을 확인하였다. 또한, 제시된 전송 방식 결정 알고리즘은 기존의 임계값 기반 알고리즘에 비해 품질 저하율이 0.6%에서 0.01% 이하로 감소하였고, 거의 동일한 전송 효율을 가지면서 약 5배의 적은 전송 방식 전환을 요구한다.

  • PDF

증기분사 가스터빈 시스템의 성능예측 (Performance Prediction of Steam Injected Gas Turbine Cycle)

  • 이한구;강승종;이찬
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1993년도 추계학술발표회 초록집
    • /
    • pp.22-30
    • /
    • 1993
  • 증기분사 가스터빈 시스템의 성능예측 모델을 상용모사기인 ASPEN 코드를 이용하여 개발하였다. 압축기 및 터빈은 등엔트로피 과정으로, 연소기는 Thermal NOx 생성을 수반하는 연소모형으로서 가정하였다. 또한 터빈 냉각을 위한 추출공기량과 냉각공기가 터빈 성능에 미치는 영향은 적절한 상관 관계식을 도입하여 평가하였다. 본 예측 모델을 이용하여 예측된 결과와 실험결과간의 비교를 통하여 모델의 타당성을 제시하였고, 증기 분사량 및 터빈 냉각변수 변화에 따른 예측결과를 통하여 가스터빈 시스템 설계기준을 제시하였다.

  • PDF