• Title/Summary/Keyword: 예측 모델

Search Result 10,511, Processing Time 0.038 seconds

Explainable Solar Irradiation Forecasting Based on Conditional Random Forests (조건부 랜덤 포레스트 기반의 설명 가능한 일사량 예측)

  • Moon, Jihoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.323-326
    • /
    • 2020
  • 태양광 발전은 이산화탄소 배출로 인한 기후 변화에 대응하는 주요 수단으로 인식되어 수요와 필요성이 급격하게 증가하고 있다. 최적의 태양광 발전 시스템의 운영을 위해서는 정교한 전력수요 및 태양광 발전량 예측 모델이 요구되며, 온도 및 일사량은 태양광 발전량 예측 모델의 필수적인 입력 변수이다. 하지만, 한국 기상청의 동네예보는 일사량에 관한 예측값을 제공하지 않아 정교한 태양광 발전량 예측 모델을 구축하는 것은 어렵다. 이를 위해 일사량 예측 기법에 관한 많은 연구사례가 보고되고 있지만, 다수의 연구들은 충분한 데이터 셋을 이용하여 일사량 예측 모델을 개발하였다. 초기 태양광 발전 시스템 운영을 위해서는 불충분한 데이터 셋을 이용한 예측 모델 개발이 필요하나 이에 대한 사례는 불충분하다. 본 논문은 실제 태양광 발전 시스템에서 수집된 불충분한 데이터 셋을 이용한 단기 일사량 예측 기법을 제안한다. 먼저, 기상청 동네예보의 다양한 기상 요인들을 이용하여 일사량 예측 모델을 위한 입력 변수를 구성한다. 다음으로, 조건부 랜덤 포레스트를 이용하여 일사량 예측 모델을 구성하며, 설명 가능한 일사량 예측뿐만 아니라 더욱더 많은 데이터 셋을 학습하기 위해 시계열 교차검증을 수행한다. 실험 결과, 제안한 기법은 다른 예측 기법들보다 높은 예측 정확도를 보일 뿐만 아니라 설명 가능한 예측 결과를 제시할 수 있음을 보여준다.

The Integer Superscalar Processor Performance Model Using Dependency Trees and the Relative ILP (종속 트리와 상대적 병렬도를 이용하는 수퍼스칼라 프로세서의 정수형 성능 예측 모델)

  • 이종복
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.13-15
    • /
    • 2001
  • 최근에 이르러 프로세서의 병렬성을 분석적 기법으로 예측하기 위한 연구가 활발해지면서 프로세서의 성능 예측 모델에 대한중요성이 대두되고 있다. 그러나 기존의 연구는 현재 광범위하게 사용되고 있는 다중 분기 예측법을 이용하는 프로세서에 대하여 분기 차수와 관계없는 재귀적 성능 모델을 제공해주지 않는다. 본 논문에서는 이것을 해결하기 위하여, 매 싸이클마다 명령어 종속 트리를 구성하고 종속인 명령어 간에 상대적인 병렬도 갓을 부여하여 성능 예측 모델 입력 데이타를 측정하였다. 그 곁과, 다중 분기 예측법을 사용하는 프로세서에서 정수형 프로그램에 대한 성능을 기존의 성능모델보다 작은 상대 오차로 예측할 수 있다.

  • PDF

Design and Implementation of an Oil Prices Forecasting System (유가예측 시스템의 설계 및 구현)

  • 김은경;이원형;배진희;김상환
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.227-234
    • /
    • 2000
  • 지금까지 수행된 대부분의 유가예측은 주고 계량 데이터를 기반으로 하는 여러 가지 계량 모델을 구성하여 수행되었으며, 그 결과 산유국 동향과 같은 국제 유가시장의 불확실성을 제대로 반영하지 못했다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위하여 계량경제학적인 접근방법과 전문가시스템을 통합한 유가예측 시스템을 설계 및 구현하였다. 즉, 계량 데이터를 기초로 유가예측 모델을 구성하고, 산유국동향과 같은 비계량적인 요인이 유가에 미치는 영향에 대한 실무자의 경험적인 지식은 지식베이스로 구축함으로써, 유가예측과 관련된 다양한 요인들을 폭넓게 고려할 수 있는 통합된 시스템을 개발하였다. 유가예측 모델로는 대표 유종의 유가 및 수급 전망을 위한 동적 선형연립 모델과 유종간 유가의 균형차액을 예측하기 위한 Fully Modified 공적분 회귀분석 모델을 구성하였으며, 유가예측 모델에서 반영하기 어려운 산유국 동향이나 OPEC정책, 선물시장 동향 등은 실무자의 경험적인 지식을 바탕으로 시스템 예측변수로 설정하여 유가예측에 반영할 수 있도록 지식베이스를 구축하였다. 또한, 본 시스템에서는 유가예측 이외에 석유 수급을 전망하고, 유가 및 수급과 관련된 다양한 정보를 제공하고 관리하는 기능을 제공하고 있다.

  • PDF

Development and Evaluation of Machine Learning-based Prediction Models for Wastewater Treatment Plant (머신러닝 기반의 하수처리장 예측 모델 평가 및 개발)

  • Kyu Dae Shim;Hyo Sang Kim;Geun Soo Chang;Dong Kyun Kim;Young Mo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.499-499
    • /
    • 2023
  • 최근 컴퓨터 성능 향상과 새로운 머신러닝 알고리즘 개발됨에 따라, 각 분야별 연구자들이 이를 활용한 연구를 다양하게 수행하고 있으며, 하수처리시설의 경우에는 막대한 양의 운영자료가 축척됨에 따라 머신러닝을 활용한 다양한 연구가 가속화 되고 있다. 기존 하수처리장의 물리학적 모델은 적용된 영향 인자에 여러 가지 가정이 고려되어 모델 정확도가 부정확해지는 경향이 있었으며, 이러한 문제점을 보완하기 위해 하수처리장의 수집된 운영자료 및 머신러닝 기반의 예측 모델을 활용하여 예측 모델 정확도를 향상하는 선행 연구들이 진행되고 있다. A 하수처리장의 부지 내에 설치된 센서를 통하여 운영자료가 중앙제어실 서버에 실시간으로 저장되는 자료를 활용하여 NN (Neural Network), SVM (Support Vector Machine), RF (Random Forest) 등과 같은 다양한 머신러닝 모델을 적용하였고, 하수처리장 운영자료를 적용할 경우 어느 모델이 가장 높은 성능이 나타나는지 인사이트를 도출하고자 하였다. 금회 연구는 A 하수처리장을 대상으로 여러 머신러닝 기반 예측 모델을 개발하고, 각 모델의 예측정확도를 서로 평가함으로써, 머신러닝 모델 최적화를 수행할 수 있었다. 이번 연구에서 도출된 결과를 활용하여 하수처리장 예측 모델 최적화를 진행할 경우, 향후 비교적 짧은 시간에 하수처리장 머신러닝 기반 예측 모델 개발이 가능하다는 점에 의의가 있다.

  • PDF

A study on the Deep Learning model-based pedestrian GPS trajectory prediction system (딥러닝 모델 기반 보행자 GPS 경로 예측 시스템 연구)

  • Yoon, Seung-Won;Lee, Won-Hee;Lee, Kyu-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.89-92
    • /
    • 2022
  • 본 논문에서는 딥러닝 모델 기반 보행자의 GPS 경로를 예측하는 시스템을 제안한다. 다양한 경로 예측 방식들 중 본 논문은 GPS 데이터 기반 경로 예측 연구이다. 시계열 데이터인 보행자의 GPS 경로를 학습하여 다음 경로를 예측하도록 하는 딥러닝 모델 기반 연구이다. 본 논문에서는 보행자의 GPS 경로를 딥러닝 모델이 학습할 수 있도록 데이터 구성 방식을 제시하였으며, 예측 범위에 큰 제약이 없는 예측 딥러닝 모델을 제안한다. 본 논문의 딥러닝 모델에 적합한 파라메터들을 제시하였으며, 우수한 예측 성능을 보이는 결과를 제시한다.

  • PDF

Design of short-term forecasting model of distributed generation power for wind power (풍력 발전을 위한 분산형 전원전력의 단기예측 모델 설계)

  • Song, Jae-Ju;Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.211-218
    • /
    • 2014
  • Recently, wind energy is expanding to combination of computing to forecast of wind power generation as well as intelligent of wind powerturbine. Wind power is rise and fall depending on weather conditions and difficult to predict the output for efficient power production. Wind power is need to reliably linked technology in order to efficient power generation. In this paper, distributed power generation forecasts to enhance the predicted and actual power generation in order to minimize the difference between the power of distributed power short-term prediction model is designed. The proposed model for prediction of short-term combining the physical models and statistical models were produced in a physical model of the predicted value predicted by the lattice points within the branch prediction to extract the value of a physical model by applying the estimated value of a statistical model for estimating power generation final gas phase produces a predicted value. Also, the proposed model in real-time National Weather Service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

Development of Shelf-life Prediction Model of Tofu Using Mathematical Quantitative Assessment Model (수학적 정량평가 모델을 이용한 두부의 유통기한 예측 모델의 개발)

  • Shin Il-Shik
    • Food Industry And Nutrition
    • /
    • v.10 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • 식물성 단백질의 주요 공급원이며 우리나라 전통식품 중의 하나인 두부의 유통기한을 정량적으로 예측할 수 있는 수학적 모델을 개발하고자 온도와 초기균수에 따른 두부 부패세균의 성장 실험 결과를 데이터베이스화하여 이를 바탕으로 균의 성장을 정량적으로 평가할 수 있는 수학적 모델을 개발하였다. 근의 증식 지표인 최대증식속도상수(k), 유도기(LT), 세대시간(GT)은 온도에 지배적인 영향을 받았으며, 초기균수에 따른 유의 적 인 차이 는 없었다(p<0.05). 최대증식속도상수와 온도 및 초기균수의 상관관계를 나타내는 수학적 정량평가모델인 square root model을 이 용하여 두부 부패 세균의 성장을 정량적으로 예측할 수 있는 모델$({\surd}{\kappa}=0.016861(T+6.87095))$을 개발하였으며 실험치와 예측치의 상관계수는0.969이었다. 이 예측 정량평가모델로부터 예측한 최대증식속도상수와 두부의 관능적 부패시 점을 반영 한 Gompertz 변형 모델을 이용하여 두부의 유통기한을 예측할 수 있는 모델$(Spoilage-critrion(hr)=\frac{2{\times}Ln2+Ln[(Nmax/No)-1])}{k}$을 개발하였다

  • PDF

A study on activation functions of Artificial Neural Network model suitable for prediction of the groundwater level in the mid-mountainous area of eastern Jeju island (제주도 동부 중산간지역 지하수위 예측에 적합한 인공신경망 모델의 활성화함수 연구)

  • Mun-Ju Shin;Jeong-Hun Kim;Su-Yeon Kang;Jeong-Han Lee;Kyung Goo Kang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.520-520
    • /
    • 2023
  • 제주도 동부 중산간 지역은 화산암으로 구성된 지하지질로 인해 지하수위의 변동폭이 크고 변동양상이 복잡하여 인공신경망(Artificial Neural Network, ANN) 모델 등을 활용한 지하수위의 예측이 어렵다. ANN에 적용되는 활성화함수에 따라 지하수의 예측성능은 달라질 수 있으므로 활성화함수의 비교분석 후 적절한 활성화함수의 사용이 반드시 필요하다. 본 연구에서는 5개 활성화함수(sigmoid, hyperbolic tangent(tanh), Rectified Linear Unit(ReLU), Leaky Rectified Linear Unit(Leaky ReLU), Exponential Linear Unit(ELU))를 제주도 동부 중산간지역에 위치한 2개 지하수 관정에 대해 비교분석하여 최적 활성화함수 도출을 목표로 한다. 또한 최적 활성화함수를 활용한 ANN의 적용성을 평가하기 위해 최근 널리 사용되고 있는 순환신경망 모델인 Long Short-Term Memory(LSTM) 모델과 비교분석 하였다. 그 결과, 2개 관정 중 지하수위 변동폭이 상대적으로 큰 관정은 ELU 함수, 상대적으로 작은 관정은 Leaky ReLU 함수가 지하수위 예측에 적절하였다. 예측성능이 가장 낮은 활성화함수는 sigmoid 함수로 나타나 첨두 및 최저 지하수위 예측 시 사용을 지양해야 할 것으로 판단된다. 도출된 최적 활성화함수를 사용한 ANN-ELU 모델 및 ANN-Leaky ReLU 모델을 LSTM 모델과 비교분석한 결과 대등한 지하수위 예측성능을 나타내었다. 이것은 feed-forward 방식인 ANN 모델을 사용하더라도 적절한 활성화함수를 사용하면 최신 순환신경망과 대등한 결과를 도출하여 활용 가능성이 충분히 있다는 것을 의미한다. 마지막으로 LSTM 모델은 가장 적절한 예측성능을 나타내어 다양한 인공지능 모델의 예측성능 비교를 위한 기준이 되는 참고모델로 활용 가능하다. 본 연구에서 제시한 방법은 지하수위 예측과 더불어 하천수위 예측 등 다양한 시계열예측 및 분석연구에 유용하게 사용될 수 있다.

  • PDF

Real-time blending method development of radar-based QPF and numerical weather prediction models for hydrological application (수문학적 활용을 위한 레이더와 수치예보모델 예측강우의 실시간 병합 기법 개발)

  • Yoon, Seong-Sim;Lee, Dong-Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.99-99
    • /
    • 2018
  • 기상이변으로 인해 국지성 호우의 발생 증가와 그로 인한 수재해 피해가 증가하고 있다. 따라서 수재해를 사전에 예측하고 저감하기 위해 비구조물적 대책인 실시간 홍수예보시스템 개발 및 운영에 관한 연구들이 수행되고 있다. 일반적으로 홍수예보시스템은 대피선행시간 확보를 위해서 초단시간 혹은 단기 수치예보모델을 수문해석모형이나 예보기법의 입력으로 활용하고 있다. 초단시간 예측은 기상레이더를 기반으로 외삽, 이류, 셀 추적 등의 기법을 활용하여 0~3시간 이내의 강수예측을 수행한다. 그러나 역학이나 물리적 과정이 동반되지 못하여 0~ 2시간 이내에서의 예측성은 높은 반면, 예측시간이 길어질수록 예측력이 낮아진다. 단기수치예보모델은 종관관측에 의존하면서 역학이나 물리과정을 동반하므로 0~6시간 혹은 12시간 이상의 예측을 수행하지만, 수치모델의 고유특성인 스핀업 등의 예측 불확실성이 내재되어 있어 예측 초기시간에서의 예측력이 낮은 한계가 있다. 따라서 강수예측의 정확도 향상을 위해 레이더와 수치예보모델의 병합기법이 필요하다. 본 연구에서는 통계분석을 통해 경험적으로 산출된 시간적 가중치를 이용한 기존 병합기법의 한계를 극복하면서 호우에 따른 가변성을 반영하는 실시간 병합기법을 개발하고, 수문학적인 활용성을 평가하고자 하였다. 사용된 예측강우 자료는 레이더 기반인 MAPLE, KONOS, 공간규모분할 예측강우와 수치예보모델 기반인 UM와 ASAPS의 예측강우이며, 제시한 가중치 산정기법은 직전 예측강우의 오차가 현 시점의 예측강우의 오차와 유사하다는 가정하에 오차항을 포함한 과거 1시간 예측강우들간의 가중치 조합이 과거 지상관측강우와의 평균제곱근오차가 최소가 되도록 화음 탐색법을 이용하여 찾는 것이다. 가중치 조합은 예측강우의 생산 시간 간격을 고려하여 매 10분마다 산정하며, 미래 3시간 예측까지 산정된 가중치를 적용한다. 수도권 영역을 대상으로 병합된 예측강우와 레이더 관측강우를 비교한 결과, 정량적 정확도가 향상됨을 확인할 수 있었다. 또한, 예측강우의 수문학적 활용성은 도시유출해석모의를 통해 평가하였다. 그 결과, 병합된 예측강우로 모의된 수심이 관측수심과 유사하여 수문학적 활용성 확인할 수 있었다.

  • PDF

Prediction model of plasma deposition process using genetic algorithm and generalized regression neural network (유전자 알고리즘과 일반화된 회귀신경망을 이용한 플라즈마 증착공정 예측모델)

  • Lee, Duk-Woo;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1117-1120
    • /
    • 2004
  • 경제적인 공정분석과 최적화를 위해서는 컴퓨터를 이용한 플라즈마 예측모델이 요구되고 있다. 본 연구에서는 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마 증착공정 모델을 개발한다. GRNN의 예측성능은 패턴층 뉴런의 가우시안 함수를 구성하는 학습인자, 즉 spread에 의존한다. 종래의 모델에서는 모든 가우시안 함수의 spread가 동일한 값에서 최적화되었으며, 이로 인해 모델의 예측성능을 향상시키는 데에는 한계가 있었다. 본 연구에서는 유전자 알고리즘 (GA)를 이용하여 다변수 spread를 최적화하는 기법을 개발하였으며, 그 성능을 PECVD 공정에 의해 증착된 SiN 박막의 증착률에 적용하여 평가하였다. $2^{6-1}$ 부분인자 실험계획법에 의해 수집된 데이터를 이용하여 신경망을 학습하였고, 모델적합성 점검을 위해 별도의 12번의 실험을 수행하였다. 가우시안 함수의 spread는 0.2에서 2.0까지 0.2간격으로 증가시켰으며, 최적화한 GA-GRNN모델의 예측성능은 6.6 ${\AA}/min$이었다. 이는 종래의 방식으로 최적화한 모델의 예측성능 (13.5 ${\AA}/min$)과 비교하여 50.7% 향상된 예측성능이며, 이러한 향상은 제안한 GA-GRNN 모델이 플라즈마 공정 모델의 예측성능을 증진하는데 매우 효과적임을 보여준다.

  • PDF