• 제목/요약/키워드: 예측 모델

검색결과 10,511건 처리시간 0.046초

GAN 및 물리과정 기반 모델 결합을 통한 Hybrid 강우예측모델 개발 (Development of hybrid precipitation nowcasting model by using conditional GAN-based model and WRF)

  • 최수연;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.100-100
    • /
    • 2023
  • 단기 강우 예측에는 주로 물리과정 기반 수치예보모델(NWPs, Numerical Prediction Models) 과 레이더 기반 확률론적 방법이 사용되어 왔으며, 최근에는 머신러닝을 이용한 레이더 기반 강우예측 모델이 단기 강우 예측에 뛰어난 성능을 보이는 것을 확인하여 관련 연구가 활발히 진행되고 있다. 하지만 머신러닝 기반 모델은 예측 선행시간 증가 시 성능이 크게 저하되며, 또한 대기의 물리적 과정을 고려하지 않는 Black-box 모델이라는 한계점이 존재한다. 본 연구에서는 이러한 한계를 극복하기 위해 머신러닝 기반 blending 기법을 통해 물리과정 기반 수치예보모델인 Weather Research and Forecasting (WRF)와 최신 머신러닝 기법 (cGAN, conditional Generative Adversarial Network) 기반 모델을 결합한 Hybrid 강우예측모델을 개발하고자 하였다. cGAN 기반 모델 개발을 위해 1시간 단위 1km 공간해상도의 레이더 반사도, WRF 모델로부터 산출된 기상 자료(온도, 풍속 등), 유역관련 정보(DEM, 토지피복 등)를 입력 자료로 사용하여 모델을 학습하였으며, 모델을 통해 물리 정보 및 머신러닝 기반 강우 예측을 생성하였다. 이렇게 생성된cGAN 기반 모델 결과와 WRF 예측 결과를 결합하는 머신러닝 기반 blending 기법을 통해Hybrid 강우예측 결과를 최종적으로 도출하였다. 본 연구에서는 Hybrid 강우예측 모델의 성능을 평가하기 위해 수도권 및 안동댐 유역에서 발생한 호우 사례를 기반으로 최대 선행시간 6시간까지 모델 예측 결과를 분석하였다. 이를 통해 물리과정 기반 모델과 머신러닝 기반 모델을 결합하는 Hybrid 기법을 적용하여 높은 정확도와 신뢰도를 가지는 고해상도 강수 예측 자료를 생성할 수 있음을 확인하였다.

  • PDF

역학적 모델과 딥러닝 모델을 결합한 저수지 수온 및 수질 예측 (Predicting water temperature and water quality in a reservoir using a hybrid of mechanistic model and deep learning model)

  • 김성진;정세웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2023
  • 기작기반의 역학적 모델과 자료기반의 딥러닝 모델은 수질예측에 다양하게 적용되고 있으나, 각각의 모델은 고유한 구조와 가정으로 인해 장·단점을 가지고 있다. 특히, 딥러닝 모델은 우수한 예측 성능에도 불구하고 훈련자료가 부족한 경우 오차와 과적합에 따른 분산(variance) 문제를 야기하며, 기작기반 모델과 달리 물리법칙이 결여된 예측 결과를 생산할 수 있다. 본 연구의 목적은 주요 상수원인 댐 저수지를 대상으로 수심별 수온과 탁도를 예측하기 위해 기작기반과 자료기반 모델의 장점을 융합한 PGDL(Process-Guided Deep Learninig) 모델을 개발하고, 물리적 법칙 만족도와 예측 성능을 평가하는데 있다. PGDL 모델 개발에 사용된 기작기반 및 자료기반 모델은 각각 CE-QUAL-W2와 순환 신경망 딥러닝 모델인 LSTM(Long Short-Term Memory) 모델이다. 각 모델은 2020년 1월부터 12월까지 소양강댐 댐 앞의 K-water 자동측정망 지점에서 실측한 수온과 탁도 자료를 이용하여 각각 보정하고 훈련하였다. 수온 및 탁도 예측을 위한 PGDL 모델의 주요 알고리즘은 LSTM 모델의 목적함수(또는 손실함수)에 실측값과 예측값의 오차항 이외에 역학적 모델의 에너지 및 질량 수지 항을 제약 조건에 추가하여 예측결과가 물리적 보존법칙을 만족하지 않는 경우 penalty를 부가하여 매개변수를 최적화시켰다. 또한, 자료 부족에 따른 LSTM 모델의 예측성능 저하 문제를 극복하기 위해 보정되지 않은 역학적 모델의 모의 결과를 모델의 훈련자료로 사용하는 pre-training 기법을 활용하여 실측자료 비율에 따른 모델의 예측성능을 평가하였다. 연구결과, PGDL 모델은 저수지 수온과 탁도 예측에 있어서 경계조건을 통한 에너지와 질량 변화와 저수지 내 수온 및 탁도 증감에 따른 공간적 에너지와 질량 변화의 일치도에 있어서 LSTM보다 우수하였다. 또한 역학적 모델 결과를 LSTM 모델의 훈련자료의 일부로 사용한 PGDL 모델은 적은 양의 실측자료를 사용하여도 CE-QUAL-W2와 LSTM 보다 우수한 예측 성능을 보였다. 연구결과는 다차원의 역학적 수리수질 모델과 자료기반 딥러닝 모델의 장점을 결합한 새로운 모델링 기술의 적용 가능성을 보여주며, 자료기반 모델의 훈련자료 부족에 따른 예측 성능 저하 문제를 극복하기 위해 역학적 모델이 유용하게 활용될 수 있음을 시사한다.

  • PDF

결합확률모델 및 기상변량을 이용한 예측강수의 편의보정 기법 (Joint Probability Approach to Bias Correction on Rainfall Forecasting Using Climate State Variables)

  • 정민규;김태정;황규남;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.309-309
    • /
    • 2019
  • 기후예측모델을 통해 일단위 강수의 예측정보가 제공되고 있지만, 실제 강수량자료와 시공간적 편의로 인해 수문학적 활용은 한계가 있다. 일반적으로 기후모델의 시공간적 해석 규모 및 예측정확성을 고려할 때 계절단위에서 예측정보의 활용이 가장 현실적인 것으로 알려지고 있다. 그러나 수문해석 시 시공간적 해상도가 낮아 직접적인 활용은 어려운 상황이며, 수문해석 모형의 입력자료로 활용 시 편의보정 및 상세화 과정이 일반적으로 요구된다. 본 연구에서는 기후모델로부터 얻은 강우예측결과에 Bayesian 모델 기반의 편의보정-상세화 기법을 개발하여 강우예측정보의 활용성을 개선하고자 한다. 이 과정에서 Bayesian Copula 모델을 이용한 이변량 형태의 예측강수의 검보정 방법을 개발하였으며, 특히 기후모델 이외의 기상 상태변량인 해수면온도(sea surface temperature, SST)를 예측인자로 추가하여 Hybrid 형태의 계절 앙상블 강우예측모델을 개발하고자 한다.

  • PDF

딥 러닝을 이용한 다중 도로구간 속도 예측 (A Deep Learning Based Traffic Speed Prediction on Multiple-Roads)

  • 손지원;송준호;김남혁;김태헌;박성환;김상욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.883-885
    • /
    • 2020
  • 최근 활발히 진행되는 교통 속도 예측 연구는 기존에는 하나의 모델로 하나의 도로구간에 대해서만 예측하는 문제를 주로 다루었다. 그러나 하나의 도로구간을 하나의 속도 예측 모델로 예측할 시, 도로구간마다 모델이 존재하여야 하므로 모델의 예측 비용이 도로구간의 수만큼 증가한다. 본 논문에서는 하나의 모델을 통해 다수의 도로구간에 대한 속도를 예측하는 다중 도로구간 속도 예측 모델을 제안한다. 제안하는 다중 도로구간 속도 예측 모델은 기존의 단일 도로구간 속도 예측 모델 대비 정확도를 보존하면서, 그 예측 비용을 크게 감소시켰다.

다중 댐 유역에 대한 강우예측모델 개발을 위한 전이학습 기법의 적용 (Application of transfer learning to develop radar-based rainfall prediction model with GAN(Generative Adversarial Network) for multiple dam domains)

  • 최수연;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.61-61
    • /
    • 2022
  • 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.

  • PDF

최적예측강수 산출을 위한 강수예측자료 병합기법 연구 (A study on blending technique of precipitation forecasting for optimized quantitative precipitation forecast)

  • 양하영;정진임;고혜영;남경엽;최영진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.985-985
    • /
    • 2012
  • 최근 지구온난화 및 기후변화로 인해 단시간에 높은 강우강도를 가지고 발생하는 집중호우 홍수 등의 위험기상으로 인한 인명 및 재산피해가 빈번하게 발생하고 있어 초단기 및 단기 강수 예측에 대한 중요성이 부각되고 있다. 단기 강수예측모델은 다양한 관측자료의 사용과 자료동화기법의 개발로 예측능력이 크게 향상되었지만 수치모델의 고유특성인 스핀업(spin-up) 문제로 1~6시간까지 강수예측성능에 한계를 보인다. 반면 초단기 강수예측모델은 레이더기반으로 외삽법을 이용하여 1~3시간까지 높은 정확도의 강수예측을 하지만 강수에코의 생성 소멸의 물리과정을 포함하지 않아 3시간 이후의 정확도가 낮다. 이러한 단기 및 초단기 강수예측모델의 장점을 반영하여 최적 강수예측 자료 생산을 위한 연구를 수행하였다. 이를 위해 초단기 및 단기 강수예측모델의 예측성능을 평가하였으며 모델의 예측성능 기반의 최적 강수자료 병합기법을 개발하였다. 향후 최적 강수예측 자료 생산체계가 구축되면 수문관련 유관기관에서 하천관리에 사용하는 유량예측모델에 시 공간적 고해상도의 강수예측정보를 제공하여 수문분야의 유량예측 정확도 행상에 기여할 것으로 기대된다.

  • PDF

고속도로에서 방음벽 효과 예측을 위한 이론식이 비교 (On Comparison of Theoretical Formulars for Estimation of Highway Noise Barriers Effect)

  • 박충상
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1991년도 학술발표회 논문집
    • /
    • pp.113-116
    • /
    • 1991
  • 본 논문에서는 고속 도로 주변에서 교통 소음 대책으로 사용되는 방음벽 효과에 대해 교통 소음 모델에 의한 예측값과 실측값을 비교하였다. 도로 교통 소음로서는 일본 음향 학회 모델, 국립 환경원 모델, 조한인 모델을 대상으로 하였다. 세가지 모델의 예측값과 실측값의 비교 결과, 갓길(노견)에서는 일본 음향 학회 모델과 국립 환경원 모델에 의한 예측값이 실측값과 $\pm$3.5dB(A) 차이로 비슷한 결과를 보였으며, 소음 측정 지점이 음원과 먼 경우는 속도가 빠를수록 일본 음향 학회 모델은 예측값과 실측값의 차이가 커졌다. 조한인 모델은 시가지 도로에서는 잘 맞지만 고속 도로에 적용하기에는 적합하지 않았다.

  • PDF

인공신경망 모델을 이용한 지천유입이 있는 대하천의 수질예측 (Prediction of Water Quality in Large Rivers with Tributary Input using Artificial Neural Network Model)

  • 서일원;윤세훈;정성현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.45-45
    • /
    • 2018
  • 오염물의 혼합거동을 해석하기 위해 물리기반 모델을 이용하는 경우 모델을 구축하고 운용하는데 많은 시간과 재정이 소요되며 현장검증을 통한 검증이 반드시 필요하다. 하지만 데이터 기반 모델의 경우 축적된 데이터만으로도 예측을 수행할 수 있으며 물리기반모델에 비해 결정해야할 입력인자가 적어 모델운용이 용이하다는 장점이 있다. 다양한 데이터 모델 중 인공신경망(ANN) 모델은 데이터가 가지는 불확실성 및 비정상성, 복잡한 상호관련성에 효과적으로 대응할 수 있는 모델로 수자원 및 환경 분야에서 자주 사용되고 있다. 본 연구에서는 인공신경망 모델을 이용하여 지천유입이 있는 대하천의 수질인자 (pH, 전기전도도, DO, chl-a)를 예측하였다. 다른 데이터기반 모델과 같이 인공신경망 모델 또한 수집된 데이터 질에 크게 영향을 받으며, 내부 입력인자의 선택이 모델의 예측 결과에 큰 영향을 미친다. 이러한 인공신경망 모델의 특성을 바탕으로 예측모형의 정확도를 향상하기 위해서는 크게 데이터 처리부분과 모델구축 부분에서의 접근이 필요하다. 본 연구에서는 데이터 처리 과정에서 연구대상지점의 각각의 수질인자가 가지는 분포 특성을 유지하기 위해 층화표츨추출법을 이용하여 데이터를 구성하였다. 모델의 구축 과정에서는 초기가중치 값의 영향을 줄이기 위해 앙상블기법을 사용하였으며, 좀 더 견고하고 정확한 결과를 예측하기 위해 탄력적 역전파알고리즘을 추가하였다. 추가적으로 합류 후 본류의 미 계측지역 수질 예측 정확도 향상을 위해 본류의 수질인자뿐만 아니라 지류의 수질인자를 입력자료로 사용하여 모의를 수행하였다. 또한 동일 구간에서 수행한 현장추적자실험 자료를 이용하여 수질인자의 분포특성을 비교, 검증하였다. 개발된 모델을 이용하여 낙동강과 금호강 합류부 하류의 수질인자를 예측한 결과 지류의 수질인자를 입력자료로 추가한 경우 예측의 정확도가 증가하였으며, 현장실험 자료를 통해 밝혀진 오염물의 거동현상을 인공신경망 모델로도 동일하게 재현하는 것으로 나타났다. 본 연구에서 제안한 인공신경모델을 이용한다면 물리기반 수치모델을 대체하여 지천으로 유입된 오염물의 거동을 정확하고 효율적으로 파악할 수 있을 것이다.

  • PDF

낙동강 하구 환경변화 예측모형의 불확실성 (Uncertainty of the operational models in the Nakdong River mouth)

  • 조홍연;이기섭
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.4-4
    • /
    • 2022
  • 낙동강 하구 환경/생태 복원을 위하여 "해수유입"으로 하구환경을 조성하는 사업이 추진되고 있으며, 해수 유입 규모와 빈도에 따른 생태환경변화를 예측하는 연구수요가 증가하고 있는 상황이다. 보다 구체적으로는 단기간의 해수유입에 의한 흐름 및 염분 확산범위 예측과 더불어 보다 장기간의 지형변화, 수질환경 변화, 생태환경 변화 등에 대한 예측이 필요한 상황이다. 그리고 그 예측의 대부분을 수치모델에 크게 의존하고 있는 상황이다. 그러나, 수치모형을 이용한 단기 예측은 가까운 미래에 대한 입력조건을 사용하여야 하기 때문에 입력조건에 대한 불확실성이 포함되고, 환경생태모형의 불확실성에 따른 예측 한계 등으로 인하여 오차가 누적되기 때문에 직접적인 활용에 크게 제한이 따를 수 있다. 또한 운영과정에서 어떤 분산, 편향 오차 등이 지속적으로 발생하는 경우, 모델 예측 결과에 대한 신뢰수준이 크게 감소하기 때문에 모델의 적절한 운영기법이 요구된다. 모델은 관심을 가지는 자연현상에 대한 근사(approximation)이고, 예상하지 못한 오차가 발생할 수 있기 때문에 관측 자료를 이용한 자료동화(data assimilation) 과정이 운영모델에서는 필수적인 부분이다. 이론적인 기반이 탄탄한 유체역학 기반 기상예측의 경우에도, 가용한 모든 지점의 관측 자료를 이용한 자료 동화과정을 통하여 모델 예측 결과를 개선하여 나가는 과정을 포함하여 운영하고 있다. 이 과정이 포함하는 중요한 개념은 수치모델이 가지고 있는 (예측 수준의) 한계를 인정하고, 수치모델에 전적으로 의존하는 것이 아니라 관측 자료를 이용하여 그 한계를 저감하여 나가는 과정이다. 모니터링은 모델의 한계를 알려주는 지표이다. 모델링과 모니터링의 불가피한 상호의존 관계를 의미하는 이 개념은 단기간의 흐름, 염분 확산 예측으로 한정되지 않고, 장기적인 변화가 예상되는 생태환경변화 모델에도 적용이 된다. 즉각적인 변화보다는 장기적인 관점에서 파악하여야 하는 생태학적인 변화는 보다 다양한 인자가 관여하기 때문에 어떤 측면에서는 모델보다는 적절한 빈도와 항목에 대한 관측계획 수립(monitoring design)이 더 중요하다고 할 수 있다. 이론적인 질량보존(mass conservation) 방정식을 기반으로 하는 모델은 다양한 현실적인 인자의 영향을 받기 때문에 모델의 한계를 인정하고, 모니터링 자료를 적극적으로 활용하여 불확실성을 저감하는 접근방식이 요구된다.

  • PDF

생성적 적대 신경망(GAN)을 활용한 강우예측모델 개발 (Developing radar-based rainfall prediction model with GAN(Generative Adversarial Network))

  • 최수연;손소영;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.185-185
    • /
    • 2021
  • 기후변화로 인한 돌발 강우 등 이상 기후 현상이 증가함에 따라 정확한 강우예측의 중요성은 더 증가하는 추세이다. 전통적인 강우예측의 경우 기상수치모델 또는 외삽법을 이용한 레이더 기반 강우예측 기법을 이용하며, 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 개발되고 있다. 기존 머신러닝을 이용한 강우예측 모델의 경우 주로 시계열 이미지 예측에 적합한 2차원 순환 신경망 기반 기법(Convolutional Long Short-Term Memory, ConvLSTM) 또는 합성곱 신경망 기반 기법(Convolutional Neural Network(CNN) Encoder-Decoder) 등을 이용한다. 본 연구에서는 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용해 미래 강우예측을 수행하도록 하였다. GAN 방법론은 이미지를 생성하는 생성자와 이를 실제 이미지와 구분하는 구별자가 경쟁하며 학습되어 현재 이미지 생성 분야에서 높은 성능을 보여주고 있다. 본 연구에서 개발한 GAN 기반 모델은 기상청에서 제공된 2016년~2019년까지의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시키고, 2020년 레이더 이미지 자료를 이용해 단기강우예측을 모의하였다. 또한, 기존 머신러닝 기법을 기반으로 한 모델들의 강우예측결과와 GAN 기반 모델의 강우예측결과를 비교분석한 결과, 본 연구를 통해 개발한 강우예측모델이 단기강우예측에 뛰어난 성능을 보이는 것을 확인할 수 있었다.

  • PDF