• Title/Summary/Keyword: 예측 기법

Search Result 6,897, Processing Time 0.036 seconds

An Efficient and Scalable 30-WT Compression Scheme (효율적이고 확장가능한 30-WT 압축기법)

  • 김성민;박시용;이승원;이화세;정기동
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04d
    • /
    • pp.614-616
    • /
    • 2003
  • 기존의 비디오 코딩에서는 연속된 프레임의 시간적인 상관성을 제거하기 위한 방법으로 이전 프레임의 정보를 이용하여 현재 프레임을 예측하는 움직임 예측기법을 많이 사용하고 있다. 정지 화상에 비해서 대용량의 특성을 지니는 비디오 데이터는 이런 움직임 예측을 통해서 대부분의 압축이 일어나게 된다. 하지만 움직임 예측기법은 않은 계산과정을 요구하므로, 전체적인 부호기 복잡도를 높이는 단점을 지닌다. 반면 30-WT는 움직임 예측을 하지 않으므로, 부호기의 복잡도를 줄일 수 있다. 하지만. 기존의 30-WT기법들은 부호화를 위한 메모리 요구사항과 복호를 위한 수신측의 지연시간이 가장 큰 단점으로 지적되었다. 따라서, 본 논문에서는 메모리 요구사항과 수신측의 지연시간을 최소로 할 수 있는 효율적이고, 확장가능한 3D-WT 기법을 소개한다.

  • PDF

Discharge prediction in a stream using ANN technique (인공신경망 기법을 이용한 하천에서 유량 예측)

  • Choi, Seongwook;Kang, Dongwon;Choi, Sung-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.116-116
    • /
    • 2022
  • 현재 인공지능은 공학적 문제 해결 외에도 다양한 분야에 적용되어 매우 친숙하게 활용되고 있다. 특히 하천 분야에서는 시설물 주위 국부세굴 또는 어류 서식처 분석과 같이 관련 변수들의 복잡성으로 적절한 결과를 쉽게 얻어내기 어려운 것들에 적용되고 있다. 그 외에도 인공지능 기법을 적용할 수 있는 분야로 하천에서의 수위를 이용하여 유량을 예측하는 것이 있다. 기존에는 수위-유량 관계 곡선을 만들어 수위를 이용하여 유량을 예측하였으나, 관계곡선 제작에 활용된 수위와 유량 범위에서 벗어나는 경우 과다한 유량으로 계산되는 경우가 있다. 본 연구에서는 인공지능 기법 중 하나인 인공신경망 기법을 사용하여 하천의 유량 예측을 수행하였다. 기존 국가수자원관리종합정보시스템에 기록된 자료를 활용하여 수위와 유량 자료를ANN에 학습시키고 학습에 활용하지 않은 시기의 자료를 이용하여 전반적인 유량 예측 성능과 루프형 수위-유량 관계 곡선을 생성할 수 있는지를 검토하였다. 또한 학습 범위를 벗어난 홍수량에 대한 측정 결과를 검토하고, 기존 수위-유량 관계곡선과 비교하여 그 성능을 검토하였다.

  • PDF

A Study on the Short-term Forecast Method Using Real-time On-site Data (실시간 관측자료를 이용한 단시간 강수 예측에 관한 연구)

  • Lee, Jong-Dae;Yoon, Seong-Sim;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.111-114
    • /
    • 2008
  • 최근 기후변화 등의 영향으로 전 세계 많은 지역에서 집중호우로 인한 홍수 피해가 증가하고 있으며, 국내에서도 홍수 피해액이 지속적으로 증가하는 추세이다. 이러한 집중호우로 인한 홍수의 피해를 줄이기 위해서는 보다 정확한 강수 예측이 선행되어야 하며, 국내에서는 레이더와 인공위성 자료를 이용한 강수 예측기법에 대한 많은 연구가 수행되고 있다. 이러한 강수 예측기법은 공간적으로 균일한 자료를 획득할 수 있는 장점이 있으나, 아직까지 정확도측면에서 활용성에 한계가 있어서 지상 관측소 자료를 이용하여 보정과정을 거친 후 예측에 활용하고 있다. 본 연구에서는 조밀한 지상 관측망을 보유한 서울지역의 실시간 관측 자료를 이용하여 단시간 강수예측을 수행할 수 있는 방법론을 제시하였다. 이 방법은 지상관측자료와 이류 모델을 이용하여 강수를 예측하는 기법이다. 이를 위해 본 연구에서는 47개 지점의 서울시 홍수정보시스템의 자료를 이용하여 단시간 강수량 예측의 방법론과 적용 방법을 제시하고자 하였다.

  • PDF

A Novel Approach to Improve Branch Prediction Accuracy by Neural Network Information (신경망을 이용한 분기 예측의 개선)

  • Kwak, Jong Wook;Kim, Ju-Hwan;Jhon, Chu Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1651-1654
    • /
    • 2004
  • 파이프라인과 슈퍼스칼라 방식이 일반화된 시스템 구조 하에서, 분기 명령어는 시스템 전체적인 성능에 중요한 영향을 미친다. 특히 분기 예측이 실패했을 경우, 잘못된 분기 예측으로 인한 페널티가 발생한다는 점에서 분기 예측의 정확도에 대한 중요성은 크다고 할 수 있다. 본 논문에서는 분기 예측의 정확도를 높이기 위해서, 분기 예측과 관련된 신경망을 구축하여 이를 통해 분기 예측에 필요한 각 요소별 가중치의 변화를 분석하고, 이를 분기 예측에 새롭게 반영하고자 한다. 본 논문에서는 이를 위해 실행 구동 방식의 시뮬레이터인 SimpleScalar를 통하여 모의 실험을 수행하였으며, 실험 결과 본 논문에서 제시한 새로운 기법이 기존의 일반적인 이단계 적응형 분기 예측 기법이나 gshare 기법에 비하여 더 우수한 결과를 보였다.

  • PDF

A stacking ensemble model to improve streamflow forecasts at medium range forecasts through hydrological regionalization over South Korea (한국 유역의 지역화를 통해 유출량 예측을 개선하기 위한 수문학적 후 처리된 스태킹 앙상블 모형)

  • Lee, Dong Gi;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.182-182
    • /
    • 2021
  • 본 연구에서는 1일부터 최대 7일까지의 시간을 두고 남한 전체의 유출량에 대한 예측 모형을 제시하고자 한다. 이를 위하여 LSM (Land Surface Model) 모형을 사용하여 유출량을 모의하였고 이 과정에서 미 계측치에 대한 유출량을 예측하기 위하여 Xgboost (Extreme Gradient Boost)를 활용하여 매개변수를 지역화하였다. 이러한 지역화 기법을 통하여 남한 전체의 유출량에 대한 그리드화 된 유출값을 얻을 수 있었다. 또한 본 연구에서는 기상 예측자료를 유출량에 대한 예측으로 변환하기 위하여 Stacking 앙상블 기반의 수문학적 후처리 기법을 사용하였다. Stacking 앙상블 기법은 Base-learner와 Meta-learner의 조합으로 이루어 지는데 본 연구에서 새롭게 사용되는 패널티 기반의 분위회귀분석 방법론은 기존의 방법론과의 비교에 있어서 유용한 것으로 파악되었다. 결과적으로 본 연구에서는 총 7일의 앞선 시간의 예측에 있어서 한반도 전체의 유출량에서 비교적 짧은 시간에 대한 예측인 1일과 2일에서의 예측은 실질적으로 사용이 가능한 것으로 파악되었다.

  • PDF

온라인 단기 부하예측

  • 김사현;황갑주
    • 전기의세계
    • /
    • v.34 no.5
    • /
    • pp.272-280
    • /
    • 1985
  • 전력계통의 목표를 달성하기 위한 기본적인 요청은 시시각각으로 변동되는 전력부하를 확실하게 예측하는 일부터 시작된다. 그런데 전력부하는 온도, 습도, 광도 등 예측일의 기상요인은 물론 산업구조, 경기변동의 사회적인 요인에 의해 변화된다. 또한 온라인 예측시는 자동급전시스템의 여건이나 예측주기에 따라 각각 고려해야 할 사항이 다양하므로 정확도가 높으면서도 안정된 결정적인 예측기법을 찾기가 어렵다. 그러나 주어진 계통과 이용할 수 있는 여건을 바탕으로 했을때의 허용정도 및 자동화등 실제 적용면에서 보다 나은 예측기법은 생각될 수 있다. 필자들은 우리나라 계통을 대상으로 자동급전시스템(AGC/SCADA system)에 의해 온라인 리얼타임으로 취득해온 부하데이터를 이용하여 자유자재 (interactive)기능을 내포한 단기 부하예측 팩키지를 개발한 바 있으며 이에 소개하는 바이다.

  • PDF

Call Admission Control Using Adaptive-MMOSPRED for Resource Prediction in Wireless Networks (무선망의 자원예측을 위한 Adaptive-MMOSPRED 기법을 사용한 호 수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2008
  • This paper presents adaptive-MMOSPRED method for prediction of resource demands requested by multimedia calls, and shows the performance of the call admission control based on proposed resource prediction method in multimedia wireless networks. The proposed method determines (I-CDP) random variables of the standard normal distribution by using LMS algorithm that minimize errors of prediction in resource demands, while parameters in an existing method are constant all through the prediction time. Our simulation results show that prediction error in adaptive-MMOSPRED method is much smaller than in fixed-MMOSPRED method. Also we can see via simulation the CAC performance based on the proposed method improves the new call blocking performance compared with the existing method under the desired handoff dropping probability.

  • PDF

Improvement of Mid/Long-Term ESP Scheme Using Probabilistic Weather Forecasting (확률기상예보를 이용한 중장기 ESP기법 개선)

  • Kim, Joo-Cheol;Kim, Jeong-Kon;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.843-851
    • /
    • 2011
  • In hydrology, it is appropriate to use probabilistic method for forecasting mid/long term streamflow due to the uncertainty of input data. Through this study, it is expanded mid/long term forecasting system more effectively adding priory process function based on PDF-ratio method to the RRFS-ESP system for Guem River Basin. For implementing this purpose, weight is estimated using probabilistic weather forecasting information from KMA. Based on these results, ESP probability is updated per scenario. Through the estimated result per method, the average forecast score using ESP method is higher than that of naive forecasting and it confirmed that ESP method results in appropriate score for RRFS-ESP system. It is also shown that the score of ESP method applying revised inflow scenario using probabilistic weather forecasting is higher than that of ESP method. As a results, it will be improved the accuracy of forecasting using probabilistic weather forecasting.

Long-term Streamflow Prediction for Integrated Real-time Water Management System (통합실시간 물관리 운영시스템을 위한 장기유량예측)

  • Kang Boosik;Rieu Seung Yup;Ko Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1450-1454
    • /
    • 2005
  • 수자원관리에 있어서 미래시구간에 대한 유량예측은 수자원시스템운영자에게 있어서 의사결정에 결정적인 영향을 미치는 가장 중요한 요소 중의 하나이다. 효율적 물배분이나 발전 등의 이수활동을 위해서 최소 월단위 이상의 장기유량예측이 필요하며, 이를 위해서는 강우예측이 선행되어야 하는데, 본 연구에서는 통합 실시간 물관리 운영시스템을 위한 중장기 유량예측을 목표로 방법론을 제시하고자 한다. 중장기 유량예측을 수행하는 대표적인 방법 중의 하나는 앙상블 유량예측(ESP; Ensemble Streamflow Prediction) 기법이다. ESP란 현재의 유역상태를 초기조건으로 사용하고 과거의 온도나 강수 등의 시계열앙상블을 모형입력으로 이용해서 강우-유출모형을 통하여 유출량을 예측하는 기법이다. ESP는 결국 현재의 유역상태와 유역에서의 과거강우관측기록, 미래강우예측에 대한 정보를 조합하여 그에 따른 유출앙상블을 생산해 내게 된다. 유출앙상블은 각 앙상블 트레이스가 갖게 되는 가중치에 따라 확률분포를 달리 갖게 되고 경우에 따라서는 유량으로부터 2차적으로 유도되는 변수들의 확률분포로 전이되기도 한다. 기존의 ESP 이론은 미국 NWS의 범주형 확률예보를 근간으로 하고 있어, 이를 국내 환경에 그대로 적용시키기에 어려움이 있어 왔다. 따라서 본 연구에서는 국내 기상청의 월간 강수전망을 이용하고, 이러한 정보의 특성에 맞는 ESP기법을 제시하였다. 더 나아가 중장기 수자원운영을 위한 일단위 월강수시나리오 구성을 위해서 수치예보와 월강수전망을 조합하여 ESP를 사용하는 기법을 제시하였다.

  • PDF

A Signal-Level Prediction Scheme for Rain-Attenuation Compensation in Satellite Communication Linkes (위성 통신 링크에서 강우 감쇠 보상을 위한 신호 레벨 예측기법)

  • 임광재;황정환;김수영;이수인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.782-793
    • /
    • 2000
  • This paper presents a simple dynamical prediction scheme of the signal level which is attenuated and varied due to rain fading in satellite communication links using above 10GHz frequency bands. The proposed prediction scheme has four functional blocks for discrete-time low-pass filtering, slope-based prediction, mean-error correction and hybrid fixed/variable prediction margin allocation. Through simulations using Ka-band attenuation data obtained from the data measured over Ku-band by frequency-scaling, it is shown that the slope-based prediction with the mean-error correction has as small standard deviation of prediction error as below 1 dB, and that the error is about 1.5 to 2.5 times as small as that without the mean-error correction. The hybrid prediction margin allocation requires smaller average margin than those of both fixed and variable methods.

  • PDF