• 제목/요약/키워드: 예측 기법

Search Result 6,897, Processing Time 0.039 seconds

A Study on the Development of a Technique to Predict Missing Travel Speed Collected by Taxi Probe (결측 택시 Probe 통행속도 예측기법 개발에 관한 연구)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.43-50
    • /
    • 2011
  • The monitoring system for link travel speed using taxi probe is one of key sub-systems of ITS. Link travel speed collected by taxi probe has been widely employed for both monitoring the traffic states of urban road network and providing real-time travel time information. When sample size of taxi probe is small and link travel time is longer than a length of time interval to collect travel speed data, and in turn the missing state is inevitable. Under this missing state, link travel speed data is real-timely not collected. This missing state changes from single to multiple time intervals. Existing single interval prediction techniques can not generate multiple future states. For this reason, it is necessary to replace multiple missing states with the estimations generated by multi-interval prediction method. In this study, a multi-interval prediction method to generate the speed estimations of single and multiple future time step is introduced overcoming the shortcomings of short-term techniques. The model is developed based on Non-Parametric Regression (NPR), and outperformed single-interval prediction methods in terms of prediction accuracy in spite of multi-interval prediction scheme.

A Study on the Performance Evaluation of Machine Learning for Predicting the Number of Movie Audiences (영화 관객 수 예측을 위한 기계학습 기법의 성능 평가 연구)

  • Jeong, Chan-Mi;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2020
  • The accurate prediction of box office in the early stage is crucial for film industry to make better managerial decision. With aims to improve the prediction performance, the purpose of this paper is to evaluate the use of machine learning methods. We tested both classification and regression based methods including k-NN, SVM and Random Forest. We first evaluate input variables, which show that reputation-related information generated during the first two-week period after release is significant. Prediction test results show that regression based methods provides lower prediction error, and Random Forest particularly outperforms other machine learning methods. Regression based method has better prediction power when films have small box office earnings. On the other hand, classification based method works better for predicting large box office earnings.

Nakdong River Estuary Salinity Prediction Using Machine Learning Methods (머신러닝 기법을 활용한 낙동강 하구 염분농도 예측)

  • Lee, Hojun;Jo, Mingyu;Chun, Sejin;Han, Jungkyu
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Promptly predicting changes in the salinity in rivers is an important task to predict the damage to agriculture and ecosystems caused by salinity infiltration and to establish disaster prevention measures. Because machine learning(ML) methods show much less computation cost than physics-based hydraulic models, they can predict the river salinity in a relatively short time. Due to shorter training time, ML methods have been studied as a complementary technique to physics-based hydraulic model. Many studies on salinity prediction based on machine learning have been studied actively around the world, but there are few studies in South Korea. With a massive number of datasets available publicly, we evaluated the performance of various kinds of machine learning techniques that predict the salinity of the Nakdong River Estuary Basin. As a result, LightGBM algorithm shows average 0.37 in RMSE as prediction performance and 2-20 times faster learning speed than other algorithms. This indicates that machine learning techniques can be applied to predict the salinity of rivers in Korea.

Study on Water Quality Predictability through Machine Learning Techniques in Non-point Pollutant Management Area (비점오염원관리지역의 머신러닝 기법을 통한 수질 예측 가능성 연구)

  • Yeong Na Yu;Min Hwan Shin;Dong Hyuk Kum;Kyoung Jae Lim;Jong Gun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.467-467
    • /
    • 2023
  • 강우에 의해 발생하는 비점오염물질의 수질 데이터가 충분하지 않아 비점오염원이 문제가 되고 있는 유역의 수질개선을 위한 대책마련이 어려운 실정이다. 기존에 환경부에서 운영하고 있는 자동측정망은 1시간 간격으로 데이터를 축적하고 있으나, 비점오염원이 문제가 되는 유역에 설치되어 있지 않거나 수온, DO, pH 등 현장항목만을 측정하고 있어 하천의 수질오염을 대표할 수 있는 T-P나 SS 등의 수질분석 항목의 부재하다. 이로인해 유역의 수질개선 대책을 수립하기 위한 오염원의 현황을 파악하기 어려운 실정이다. 따라서, 본 연구에서는 비점오염원관리지역 중 골지천 유역을 대상으로 수질항목별 상관성을 분석하고, 실측자료를 기반으로 DT, MLP, SVM, RF, GB, XGB 등의 머신러닝 기법을 통해 수질 예측 가능성을 연구하였다. 상관관계 분석결과 입력변수인 탁도 항목이 예측 수질과 뚜렷한 상관관계를 보이는 것으로 나타났으나, 그 외 항목에서는 약한 상관관계를 보이거나 상관관계가 없는 것으로 나타났다. 머신러닝 기법을 활용한 수질 예측 분석 결과, 검무교와 태봉2교, 제1여량교는 RF 기법에서 결정계수(R2) 0.57~0.86, RMSE 16.49~175.60으로 예측성이 우수한 것으로 나타났다. 관말교는 SVM 기법에서 R2 0.65, RMSE 57.69로, 송계교는 XGB 기법에서 R2 0.74, RMSE 282.86으로 가장 예측성이 우수한 것으로 나타났다. 분석결과와 같이 머신러닝 기법을 활용한 수질 예측은 가능하나, 예측성이 우수한 머신러닝 기법의 R2 비교 결과, 유역면적이 큰 제1여량교와 작은 관말교에서 0.57과 0.65로 다른 지점에 비해 낮은 것으로 나타났다. RMSE 비교 결과, 상류 산간지역에 발생한 국지성 호우의 영향으로 흙탕물이 가장 자주 발생하는 태봉2교 지점과 우선관리지역이 합류되는 송계교 지점에서 175.60과 282.86으로 예측값과 실측값의 오차가 큰 것으로 나타났다. 연구결과와 같이 하천 수질을 예측하기 위해서는 유역면적 혹은 유역특성과 관련한 기초자료를 추가로 적용하여 머신러닝 기법을 적용 해야할 것으로 판단된다. 또한, 본 연구에서 예측한 수질 항목 이외에 입력변수를 추가로 확보하여 수질의 예측 가능성을 검토해야 할 것으로 보여진다.

  • PDF

Prediction Method Using Weighted Vector Addition (벡터합을 이용한 위치 예측 기법)

  • 이현석;양성봉
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.529-531
    • /
    • 2000
  • 본 논문은 Geometry Compression 분야에서 다뤄지는 압축기법 중 delta encoding 과정을 보완하여 좀 더 높은 압축률을 얻고자 하는 vertex position prediction 과정에 대한 내용으로 구성되어 있다. 이것은 triangle strip 형태의 입력을 받아서 그 vertex data 중 position 정보들간의 delta encoding 과정을 예측 기법을 이용한 encoding 과정으로 대체하여 Huffman encoding 과정에서의 symbol 개수를 줄여 압축률을 향상시키자는 개념에서 출발한다. triangle strip 생성 기법 중 greedy algorithm을 적용한 후, 기존의 parallelogram 방식과 이 논문에서 새로이 제안하는 방식을 비교하여 보다 나은 압축 방식을 제시하는 것이 이 논문의 목적이다. 이 논문에서 제시하는 방식을 실험한 결과, 기존의 예측 기법에 비해 2.4% 정도의 향상을 보여주고 있다.

  • PDF

Application of data preprocessing to improve the performance of the metaheuristic optimization algorithm-deep learning combination model (메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 성능 개량을 위한 데이터 전처리의 적용)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.114-114
    • /
    • 2022
  • 딥러닝의 학습 및 예측성능을 개선하기 위해서는 딥러닝 기법 내 연산과정의 개선과 함께 학습 및 예측에 사용되는 데이터의 전처리 과정이 중요하다. 본 연구에서는 딥러닝의 성능을 개량하기 위해 제안된 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형과 데이터 전처리 기법을 통해 댐의 수위를 예측하였다. 수위예측을 위해 Multi-Layer Perceptron(MLP), 메타휴리스틱 최적화 알고리즘인 Harmony Search(HS)와 딥러닝을 결합한 MLP using a HS(MLPHS) 및 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)와 딥러닝을 결합한MLP using a EBHS-CGS(MLPEBHS)를 통해 댐의 수위를 예측하였다. 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 학습 및 예측성능을 개선하기 위해 학습 및 예측을 위한 자료를 기반으로 데이터 전처리기법을 적용하였다. 적용된 데이터 전처리 기법은 정규화, 수위구간별 사상(Event)분리 및 수위 변동에 대한 자료의 구분이다. 수위예측을 위한 대상유역은 금강유역에 위치한 대청댐으로 선정하였다. 대청댐의 수위예측을 위해 대청댐 상류에 위치하는 수위관측소 3개소를 선정하여 수위자료를 취득하였다. 각 수위관측소에서 취득한 수위자료를 입력자료로 설정하였으며, 대청댐의 수위자료를 출력자료로 설정하여 메타휴리스틱 최적화 알고리즘-딥러닝 모형의 학습을 진행하였다. 각 수위관측소 및 대청댐에서 취득한 수위자료는 2010년부터 2020년까지 총 11년의 일 단위 수위자료이며, 2010년부터 2019년까지의 자료를 학습자료로 사용하였으며, 2020년의 자료를 예측 및 검증자료로 사용하였다.

  • PDF

Processing of uncertain position of regularly sampling moving objects (주기적인 위치보고 이동체의 불확실 위치 처리)

  • 진희규;김동현;임덕성;홍봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.241-243
    • /
    • 2004
  • 위치기반서비스 응용 분야에서 위치 데이터를 저장하기 위하여 일반적으로 이동체의 위치 데이터를 주기적으로 수집한다. 주기적으로 수집된 위치 데이터는 보고 주기 사이의 위치 변화를 반영하지 못하기 때문에 시간에 대한 선형 함수를 이용하여 예측된 위치 데이터와 오차가 발생한다. 따라서 오차가 존재하는 불확실한 미래 위치 데이터로 인하여 미래 위치 색인에서 검색의 정확도가 떨어지는 문제점이 발생한다. 이 논문에서는 주기적인 위치보고 이동체에서 발생하는 불확실한 위치 데이터를 처리하기 위해서 예측된 위치 데이터에 예측 오차분을 반영한 불확실성 영역을 사용한다 그리고 이동체의 불확실성 영역을 설정하기 위하여 최근 예측 오차 가중치 기법과 칼만 필터 기법을 제안하고 이를 기반으로 하는 불확실 위치 처리 기법을 이동체 미래 위치 색인에서 구현하고 성능 비교 평가를 수행한다. 성능 평가 결과에 따르면 기존의 선형함수 기반 예측 기법보다 불확실 위치 처리 기법이 영역 검색의 정확도가 향상되는 장점을 가진다.

  • PDF

Scheme for Reducing HEVC Intra Coding Complexity Considering Video Resolution and Quantization Parameter (비디오 해상도 및 양자화 파라미터를 고려한 HEVC의 화면내 부호화 복잡도 감소 기법)

  • Lee, Hong-rae;Seo, Kwang-deok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.97-100
    • /
    • 2014
  • 최근 초고화질 해상도(UHD) 영상 서비스에 따른 기존의 비디오 압축 기술인 H.264/AVC 대비 두 배 이상의 압축 성능을 가지는 HEVC(High-Efficiency Video Codec)의 표준화가 완료되었다. 그러나 높은 압축 효과를 얻기 위하여 복잡한 연산이 필요한 기법들이 많이 도입되어 HEVC의 부호화 복잡도는 H.264/AVC보다 크게 증가되었다. 예로써 HEVC의 화면내 예측 부호화는 예측 방향를 최대 35개까지 확장함으로써 기존 H.264/AVC에 비해서 향상된 부호화 효율을 갖지만 화면내 부호화의 복잡도는 크게 증가되어 복잡도 감소 기법이 필요하다. 본 논문은 화면내 예측 부호화에 사용되는 예측 방향 35가지를 비디오 해상도와 양자화 파라미터 크기를 고려하여 4가지 모드로 나누고 비디오 해상도의 따른 PU(Prediction Unit)의 크기의 점유율에 따라 예측 방향 개수를 변경함으로써 계산 복잡도를 감소시키는 기법을 제안한다. 실험 결과를 통해 제안된 기법을 적용함으로써 대략 2%의 BD-rate 증가로 부호화 시간을 4% 감소시킬 수 있었다.

  • PDF

Fast Intra Prediction Mode Decision for HEVC (HEVC의 고속 화면내 예측 모드 결정 기법)

  • Chang, Yong-Jun;Kim, Dong-Hyun;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.174-175
    • /
    • 2013
  • HEVC의 화면내 예측 부호화는 예측 모드를 최대 35개까지 확장함으로써 기존H.264/AVC에 비해서 향상된 부호화 효율을 갖는다. 반면 화면내 부호화의 복잡도 또한 크게 증가하여 복잡도 감소를 위한 고속 부호화 기법이 요구된다. HEVC의 차조모델인 HM에서는 화면내 부호화 고속화를 위해 RMD(Rough Mode Decision) 과정을 통하여 후보 모드를 결정하고 선택된 후보 모드에서 초종 예측 모드를 결정한다. 본 논문에서는 화면내 부호화의 복잡도 감소를 위하여 고속 화면내 예측 모드 결정 기법을 제시한다. 본 기법은 후보 모드를 결정하기 위한 RMD 과정에서의 탐색 모드 수와후보 모드로부터 최종 모드를 결정하기 위한 탐색 모드 수를 제한하는 방법을 결합하여 모드 결정을 위한 복잡도를 감소한다. 본 제안 기법은 실험결과 HM 12.0대비 1.0%의 비트 증가로 13.19%의 복잡도를 감소시킬 수 있었다.

  • PDF

Adaptive Quad Block-based Disparity Estimation Algorithm Using Adjacent Predictors (인접 블록 상관도를 이용한 적응형 4분할 블록기반 고속 새차예측 기법)

  • 송혁;배진우;최병호;유지상
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.294-297
    • /
    • 2003
  • 최근 3차원 영상의 압축 방법에 대한 연구가 여러 분야에서 활발히 이루어지고 있으며, 특히 MPEG에서는 이와 관련하여 Exploration Experiment를 통하여 효율적인 기법을 연구하고 있다. 본 논문에서는 EE3를 위하여 스테레오 비디오 압축을 위한 효율적인 블록기반 시차예측 기법을 제안한다. 제안된 알고리즘은 스테레오 영상의 특성 중 주변 블록의 시차 벡터가 유사하다는 점을 이용하여 주변의 시차벡터를 예측 파라미터로 사용함으로써 계산량을 감소시킬 수 있었다. 또한, 예측 오차가 큰 객체의 경계면에서 블록의 크기를 4분할로 분할하여 시차 벡터를 재검색 하는 기법으로 경계 블록에 대한 예측 오차를 감소시킬 수 있었다. 모의 실험 결과 기존의 블록정합기법(BMA)에 비해 최대 75%의 계산량이 감소하였으며, PSNR 측면에서도 0.3dB이상 개선되었다.

  • PDF