• 제목/요약/키워드: 예측조합

검색결과 805건 처리시간 0.025초

토픽의 조합으로 이벤트 흐름을 예측하기 위한 시각적 분석 시스템 (Visual Analytics using Topic Composition for Predicting Event Flow)

  • 연한별;김석연;장윤
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권12호
    • /
    • pp.768-773
    • /
    • 2015
  • 사회적 혼란을 야기하는 이벤트는 발생 직후 어떻게 대응하느냐에 따라 소요되는 비용의 편차가 크다. 이에 따라 비정상적인 이벤트를 탐지하고 의미를 파악하는 연구가 많이 진행되고 있다. 또한 예측 분석에 관한 연구도 많이 수행되고 있다. 그러나 대부분의 연구는 이벤트의 전체적인 미래 경향에 대한 수치 결과를 예측할 뿐, 이벤트가 내포하는 의미에 대한 예측 연구는 미비하다. 이에 따라 본 논문에서는 비정상적인 이벤트가 내포하는 토픽의 조합을 통해 미래에 어떠한 일이 발생할 수 있는지에 대한 시각적 예측 분석 방법을 제안한다. 제안하는 방법은 먼저 트윗에서 실시간으로 비정상 이벤트를 탐지한다. 그 다음 과거 유사한 사례를 탐색한 다음 이벤트와 관련된 토픽들을 추출한다. 마지막으로 사용자는 의미 있는 토픽의 조합을 통해 미래에 어떠한 일이 발생할 수 있을지 분석할 수 있다. 실험은 두 가지 상황에 대한 예측 분석을 수행하였으며, 실험 결과 본 논문에서 제안한 방법의 타당성을 입증하였다.

단변량 시계열 모형들의 단순 결합의 예측 성능 (Performance for simple combinations of univariate forecasting models)

  • 이선홍;성병찬
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.385-393
    • /
    • 2022
  • 본 논문에서는 시계열 예측 분야에서 잘 알려져 있는 단변량 시계열 모형들을 이용하여, 그들의 단순 조합이 어떤 예측력을 보여주는지 연구한다. 고려된 단변량 시계열 모형으로는, 지수평활 및 ARIMA(autoregressive integrated moving average) 모형들과 그들의 확장된 형태인 모형들 그리고 예측의 벤치마크 모형으로 자주 사용되는 비계절 및 계절 랜덤워크 모형이다. 단순 조합의 방법은 중앙값과 평균을 이용하였으며, 검증을 위하여 사용된 데이터셋은 3,003개의 시계열 자료로 구성된 M3-competition 자료이다. 예측 성능을 sMAPE(symmetric mean absolute percentage error)와 MASE(mean absolute scaled error)로 평가한 결과, 단변량 시계열 모형들의 단순 조합이 아주 우수한 예측력을 가지고 있음을 확인하였다.

열간 자유 단조 공정의 에너지 효율화를 위한 모형 기반 작업 계획 최적화 (Model-Based Scheduling Optimization of Hot Press Forging Process for Energy Efficiency)

  • 이정미;김세영;류광렬
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.641-644
    • /
    • 2018
  • 열간 자유 단조는 고온으로 가열한 강피에 압력을 가하여 원하는 형상을 빚는 공정이다. 가열로에서 여러 개의 강피를 동시에 가열하며 목표 온도에 도달하면 꺼내어 다음 공정을 진행한다. 이때 가열로에 투입하는 소재의 조합과 후단 공정을 위해 소재를 꺼내는 순서가 가열로의 에너지 효율에 영향을 끼친다. 본 논문에서는 열간 자유 단조의 에너지 효율을 높이기 위한 비용 예측 모형 기반 작업 계획 최적화 방안을 제안한다. 유전 알고리즘을 이용하여 가열로 강피 조합을 최적화하며 각 설비별 작업 할당 규칙에 따라 전체 작업 계획을 수립한다. 시뮬레이션 기반으로 후보 작업 계획을 평가하여 계획을 최적화 하며 이를 위해 각 설비별 공정 소요 시간 및 에너지 사용량 예측 모형을 이용한다. 예측 모형은 공정 데이터를 기반으로 기계 학습 알고리즘을 적용하여 학습한다. 또한 주기적인 재계획을 통해 예측의 불확실성으로 인해 작업의 진행이 계획대로 이루어지지 않는 문제점을 해결하고자 한다.

ESP 기법을 적용한 금호강유역의 단기 유량예측 (Short-term streamflow Prediction Using ESP Method in Gumho River Basin)

  • 최현구;이을래;강신욱;이상호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.411-411
    • /
    • 2015
  • 유량예측의 가장 주된 목적은 가뭄과 홍수와 같은 수해방지를 위해 통합수자원관리를 수행하는데 있다. 이런 유량예측을 위해 다양한 기법들로 예측이 수행되고 있으며, 예측기간과 필요 정확도에 따라 초단기, 단기, 중 장기 예측 등으로 구분할 수 있다. 유량예측에 사용되는 기법들은 기후변화 시나리오와 같이 예측된 강우자료를 이용하여 유출량을 예측하는 방법이 있으며, 통계적인 방법으로 과거자료들을 활용하여 미래의 유량을 예측하는 방법이 있다. 본 연구에서는 ESP 기법을 이용하여 금호강 유역의 월 단위(30일) 유량을 예측하고자 한다. 앙상블 유량예측기법(ESP; Ensemble Streamflow Prediction)이란 현재의 유역상태를 초기조건으로 사용하고 과거의 온도나 강수 등의 시계열 앙상블을 강우-유출모형에 입력하여 유출량을 앙상블로 예측하는 기법이다. ESP는 결국 현재의 유역상태와 유역에서의 과거 강우 관측기록, 미래 강우예측에 대한 정보를 조합하여 그에 따른 유출 앙상블을 생산해내게 된다. 월 유량을 예측하기 위해서 금호강 유역의 1988년에서 2014년까지 27년간 대구, 영천, 포항 관측소의 기상자료를 수집하였으며, 금호강 표준유역에 해당하는 19개 유역으로 분할하여 모의에 이용하였다. 금호강 유역에 티센망을 적용하여 각 표준유역별로 강우량을 조합하여 2013년까지 모의에 적용하였으며, 이는 과거자료로 사용하였다. 유량예측에 사용되는 강우자료를 생성하기 위해서 26년간 일강우를 이용하였다. 예를 들어 2014년 12월을 예측한다면 11월까지 관측된 유역초기 조건을 가지는 수문모형의 12월 기상입력자료로써 현재 유역에서 발생 가능성이 있는 동일 유역의 과거 1988년부터 2013년까지의 12월 기상자료들을 사용하는 방법이다. 1988년부터 2013년까지 26개 12월 기상자료를 사용하므로 유량예측결과 또한 26개가 주워진다. 계산된 26개의 유량앙상블이 적용된 유역에서 12월에 발생 가능한 유출량의 모음이 된다. 시나리오결과를 수자원관리에 활용하기 위해서 초과확률로 분석하였으며, 이런 분석의 결과는 향후 가뭄과 홍수 같은 수해방지를 위해 수공구조물의 운영에도 활용할 수 있을 것으로 판단된다.

  • PDF

공공청사 개산견적 정확도 향상을 위한 공사비 영향요인 분석 (Analysis of Impact Factors for the Improvement of Conceptual Cost Estimation Accuracy for Public Office Building)

  • 조영호;윤석헌
    • 한국건축시공학회지
    • /
    • 제21권5호
    • /
    • pp.495-506
    • /
    • 2021
  • 본 연구는 기획단계에서 이루어지는 개산견적 예측 모델의 정확도를 향상시키기 위하여 최적의 영향요인 조합을 제시하였다. 이에 기획단계에서 활용이 가능한 정량적인 영향요인을 선정하여 상관분석 통해 공사비에 가장 많은 영향을 주는 연면적을 중심으로 8가지의 영향요인 조합을 설정하였다. 8가지 영향요인 조합을 다중회귀분석을 통하여 VIF계수 및 회귀식을 도출하였다. VIF계수를 통해 연면적, 건축면적과 층 영향요인을 함께 사용할 경우 연면적과 건축면적 두 영향요인 간의 종속적인 관계를 확인하였다. 이에 독립성이 예측 모델 정확도의 관계를 분석하기 위하여 실 사례 프로젝트 10건을 회귀식에 대입하여 정확도를 분석하였다. 분석결과, 독립성이 확보가 안 된 영향요인 조합은 다른 영향요인에 비해 정확도 떨어지는 것을 확인할 수 있다. 따라서 최대한 많은 영향요인을 활용하는 것보다 최적의 영향요인 조합을 선정하는 것이 예측 모델의 정확도를 향상시킬 수 있다고 판단되며, 본 연구에서는 연면적과 건축면적을 활용하였을 경우 정확도가 가장 높은 것을 확인하였다.

SVM을 이용한 호우 상황 예측 (The Prediction of Heavy Rain Condition using SVM)

  • 이재동;이성우;김재광;이지형
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.444-446
    • /
    • 2012
  • ECMWF(European Centere of Medium-Range Weather Forecasts)에서 정의한 기상 데이터는 254개의 속성으로 구성되어 있다. 기상 데이터는 매 6시간 마다 수집되며 그 양이 방대하다. 하지만 모든 속성을 이용하여 기상을 분석 하는 것은 너무 많은 시간이 소요되고 대부분의 속성들은 기상을 분석하는데 많은 영향을 미치지 않는다. 따라서 적절한 속성을 이용하여 날씨를 정확하게 분석 하는 것은 매우 중요하다. 본 연구에서는 과거의 기상 데이터를 이용하여 6시간 후의 호우 또는 비호우를 예측하는 실험을 진행 하였다. 기상 데이터 속성의 조합과 관찰 영역 변경에 따라 호우상황 예측 정확도의 변화를 살펴본다. 6시간 이후의 호우/비호우 예측을 함에 있어 조합된 속성이 단일 속성보다 더 좋은 결과를 보이는 것을 알수 있었고 관찰 영역이 더 클수록 좋은 예측 결과를 보임을 알 수 있었다. 하지만 일정 범위가 넘어서면 계산 비용이 높아지고 연산 속도가 현저하게 떨어지고 예측 결과도 범위에 비례하여 크게 향상되지 않는것을 알 수 있었다.