본 연구의 목적은 일반국도에서 계획 시에 예측한 교통량과 실제 개통 이후의 교통량을 비교하여 수요예측의 정확도를 파악하는 것이다. 이를 위해 1980년대와 1990년대에 계획된 총 10개 일반국도 구간을 선정하였다. 예측교통량과 실측교통량의 비교를 위해 계획 시의 보고서를 수집하였으며, 상시교통량 조사지점이 있는 구간을 중심으로 선정하였다. 비교를 위한 지표는 오차율을 이용하였으며, 고속국도 등 네트워크 연계성이 있는 구간과 사회경제지표에 의한 구간으로 구분하여 비교 분석하였다. 분석결과, 네트워크 연계성이 있는 구간은 고속국도의 개통에 의한 영향정도에 대한 정확성이 높을수록 오차율이 낮은 것으로 나타났다. 개통시기에 따른 정확도는 개통 이후에 점차적으로 오차율이 낮아지는 것으로 나타나 긍정적인 것으로 판단되었다. 구간별 단위길이에 따른 정확도는 단위길이가 길수록 오차율이 높아지는 것으로 나타났다. 개통 후 3년 시점을 기준으로 오차율을 고속국도와 비교한 결과 일반국도가 다소 안정적인 패턴을 보이고 있으나 개통연도에 따른 오차율의 변화는 큰 차이가 없는 것으로 나타났다.
본 연구는 2007년의 태풍 Manyi와 Usagi 기간 동안에 대기모델에 의해 예측된 한반도 주변의 해면기압의 정확도를 비교하였다. 중규모 지역 모델인 RDAPS, KWRF와 본 연구에서 개발된 9 km, 3 km 수평해상도의 고해상도 WRF 모델 결과가 활용되었다. 모델로 예측된 해면기압은 한반도 주변의 AWS와 해양기상 부이 등 연안지역에 총35개 지점 관측자료와 비교하였다. 비록 4개의 모델이 태풍 기간 동안 해면기압을 잘 모의하였지만 3 km WRF가가장 좋은 예측 결과를 보였으며 지역 모델인 RDAPS와 KWRF와 비교하여 최대 69%와 60% 정확도 향상을 보였다.
기후변화에 따른 집중호우 및 태풍 발생의 증가로 강우레이더를 이용한 홍수예경보시스템의 필요성이 증대되고 있다. 그러나 현재 국내에서 주로 활용되고 있는 단일편파 레이더는 정확도의 한계로 인해 홍수예보 활용에 어려움을 야기해왔다. 최근에는 수직반사도, 차등반사도, 비차등반사도 등 다양한 변수 취득을 통해 강우입자의 형태를 더욱 정확하게 추정할 수 있는 이중편파 레이더의 활용이 높아지고 있다. 본 연구에서는 홍수예보 활용을 위해 이중편파 레이더 실황강우 및 예측강우의 정확도를 평가하고자 한다. 평가를 위해 비슬산 레이더 자료를 활용하였으며, 2012~2014년의 강우사상을 선정하였다. 단일 및 이중편파 레이더 강우를 각각 추정하고, 강우예측을 위해 추정된 레이더 강우를 이류모델(Translation model)에 연계하여 선행 6시간까지의 예측강우를 생산하였다. 강우의 탐지능력 평가를 위해 Hit rate를 이용하였으며, 레이더 관측반경 증가 및 강우강도의 증가에 따른 정확도 분석을 수행하였다. 강수추정 정확도 평가를 위해 상관계수와 평균제곱근 오차를 이용하였으며, 비슬산 강우레이더 100 km 반경 내에 속한 국토교통부 관할의 지상관측강우와비교하였다. 그 결과, 이중편파 레이더 실황강우가 단일편파 레이더에 비해 지상관측강우의 거동과 더욱 유사하게 나타났으며, 양적인 오차도 더 적은 것으로 확인되었다. 또한, 레이더 예측강우는 선행시간이 증가함에 따라 정확도가 감소하였으나, 선행시간 1시간까지는 활용이 가능하다고 판단된다.
태풍으로 인한 피해를 줄이기 위해 경로, 강도 및 폭풍해일의 사전 예측은 매우 중요하다. 이중, 태풍의 경로와는 달리 강도 및 폭풍해일의 예측에 있어서 바람장은 수치 모델의 초기 입력값으로 요구되기 때문에 정확한 바람장 정보는 필수적이다. 대기 바람장 예측 방법은 크게 해석적 모델링, 라디오존데 측정과 위성 사진을 통한 산출로 구분할 수 있다. Holland의 해석적 모델링은 비교적 적은 입력값이 필요하지만 정확도가 낮고, 라디오존데 측정은 정확도가 높지만 점 측정에 가깝기 때문에 이차원 바람장을 산출하기에 한계가 있다. 위성 사진을 통한 바람장 산출은 위성기술의 고도화로 관측 채널 수 및 시공간 해상도가 크게 증가하고 있기 때문에 다양한 기법들이 개발되고 있다. 본 연구에서는 생성적 적대 신경망 (Generative Adversarial Network, GAN)을 통해 일련의 연속된 과거 적외 채널 위성 사진 흐름의 패턴을 학습시켜 미래 위성 사진을 예측하고, 예측된 연속적인 위성 사진들의 교차상관 (cross-correlation)을 통해 바람장을 산출하였다. GAN을 적용함에 있어 2011년부터 2019년까지 한반도 근방에 접근했던 태풍 중에 4등급 이상인 68개의 태풍의 한 시간 간격으로 촬영된 총 15,683개의 위성 사진을 학습시켜 생성된 이미지들은 실측 위성 사진들과 매우 유사한 것으로 나타났다. 또한, 생성된 이미지들의 교차상관으로 얻어진 바람장 벡터들의 풍향, 풍속, 벡터 일관성 및 수치 모델과의 비교를 통해 각각의 벡터들의 품질 계수를 구하고 정확도가 높은 벡터들만 결과에 포함하였다. 마지막으로 국내 6개의 라디오존데 관측점에서의 실측 벡터와의 비교를 통해 본 연구 결과의 실효성을 검증하였다. 본 연구에서 확장하여, 이와 같이 AI 기법과 이미지 교차상관 기법을 사용하여 얻어진 바람장으로부터 태풍 강도예측에 필요한 요소인 태풍의 눈의 위치, 최고 속도와 태풍 반경을 직접적으로 산출할 수 있고. 이러한 위성 사진을 기반으로 한 바람장은 단순화된 해석적 바람장을 대체하여 폭풍 해일 모델링의 예측 성능 개선에 기여할 것으로 보여진다.
이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.
미세먼지의 인체 영향이 밝혀지며 예보정확도 개선에 대한 요구가 증가하고 있다. 이에 기계 학습 기법을 도입하여 예측 정확성을 높이려는 노력이 수행되고 있으나, 저농도 발생 비율이 매우 큰 미세먼지 데이터로 인해 전체 예측 성능이 떨어지는 문제가 있다. 본 논문에서는 PM10 미세먼지 예보 정확도 향상을 위해 농도별 분리 예측 모델을 제안한다. 이를 위해 천안 지역의 기상 및 대기오염 인자를 활용하여 저, 고농도별 예측 모델을 설계하고 전 영역 예측 모델과의 성능 비교를 수행하였다. RMSE, MAPE, 상관계수 및 AQI 정확도를 통한 성능 비교 결과, 전체 기준에서 예측 성능이 향상됨을 확인하였으며, AQI 고농도 예측 성능의 경우 20.62%의 성능 향상이 나타났음을 확인하였다.
해운항만물류산업은 세계 경제활동과 밀접한 관계를 가지고 있으며, 특히 무역의존도가 높은 우리나라의 항만 시설은 중요한 사회간접자본시설이다. 부산항은 우리나라 최대의 항만으로 우리나라 컨테이너 운송의 75%가 부산항을 통해 운송되고 있으며, 국가 경쟁력 측면에서 그 중요성은 매우 크다. 항만 물동량 예측은 항만 개발 및 운영 전략에 영향을 미치며, 정확도 높은 컨테이너 물동량 예측은 필수적이다. 하지만 오늘날 해운항만물류산업 환경의 급격한 변화로 인해 기존 시계열 예측 방법으로는 예측 정확도 향상에 어려움이 있다. 본 연구에서는 부산항 컨테이너 물동량 예측 정확도 향상을 위해 딥러닝 모형 중 LSTM 모형을 활용하여 컨테이너 물동량을 예측한다. 모형의 성능 평가를 위해서 SARIMA 모형과 LSTM 모형의 예측 정확도를 비교한다. 그 결과 LSTM 모형이 SARIMA 모형보다 예측 정확도가 높게 나타났으며, 예측치가 실측치의 특성을 반영하여 잘 나타나고 있음을 확인하였다.
국내에서는 예측 불가능한 재난으로 인한 침수 피해 발생사례가 증가하였다. 따라서 침수 피해 예측이 더욱 중요해지고 있는 실정이다. 기존에는 주로 수치모형을 통한 침수예측을 하였고, 정보통신기술도 발달해왔지만 아직까지 수치모의에 많은 시간이 소요되기 때문에 침수 피해의 실시간 예측이 힘든 상황이다. 이에 국립재난안전연구원(2017)에서 침수예측을 위한 보간 모델인 SIND(Scientific Interpolation for Natural Disaster) Model을 개발하였다. 이는 보간을 이용한 모델이기 때문에 그동안 사용해왔던 물리 모형보다 간단하다. 그러나 정확한 값이 아닌 보간을 이용한 모델이기 때문에 정확도를 검토할 필요가 있다. 따라서 본 연구에서는 Mapping분야에서 사용하는 CRITIC(CRiteria Importance Through Intercriteria Correlation) 기법을 활용하여 지도의 정확도 검토를 수행하였다. CRITIC은 형상기준, 위치기준, 면적기준을 이용하여 형상유사도를 산정하는 방법이며, 이 기법을 활용하여 국가가 제공한 침수예상도(국립해양조사원, 2010)와 SIND모델 결과 지도를 비교하였다. 형상기준은 지도의 형상을 나타내는 형상지수를 비교하고, 위치기준은 지도의 무게중심의 일치정도, 면적기준은 형상 면적을 비교하는 것이다. 지도는 총 300여개의 매칭 객체 쌍을 가지고 수행하였고, 위험도 등급은 Grade 1부터 Grade 5 까지 분류하여 나타내었다. 연구 대상지역은 ${{\bigcirc}{\bigcirc}}$시이다. 그 결과, 형상유사도는 약 200여개의 매체쌍이 0.80 이상의 값을 나타냈고, 나머지 매체 쌍은 0.75이하의 값을 나타내었다. 위험도 등급이 낮을수록 형상유사도 값은 크게 나타나고, 위험도 등급이 높을수록 형상유사도 값이 작게 나타나는 경향을 보였다. 이는 위험도 등급이 높은 곳의 경우, 해안선의 복잡한 지형형태 때문으로 판단된다. Mapping 분야에서 형상유사도 적합성 기준이 0.75이므로 결과는 60%이상이 정확하다고 판단할 수 있다. 따라서 본 연구에서 검토를 수행했던 간단한 방정식을 이용한 SIND 모델은 정확하다고 판단할 수 있다. 다만, 복잡한 지형과 현재 고려되고 있는 영향인자 외에 다양한 구조물 등을 고려한다면 형상유사도가 향상될 것이라 기대된다.
TATI 모델이란 Traffic Accident Text to RGB Image 모델로, 교통사고 심각 정도 예측을 위한 본 논문에서 제안하는 방법론이다. 교통사고 치사율은 매년 감소하는 추세이나 OECD 회원국 중 하위권에 속해있다. 교통사고 치사율 감소를 위해 많은 연구들이 진행되었고, 그 중에서 교통사고 심각 정도를 예측하여 발생 및 치사율을 줄이기 위한 연구가 꾸준하게 진행되고 있다. 이와 관련하여 최근에는 통계 모델과 딥러닝 모델을 활용하여 교통사고 심각 정도 예측을 하는 연구가 활발하다. 본 논문에서는 교통사고 심각 정도를 예측하기 위해서 교통사고 데이터를 컬러 이미지로 변환하고, CNN 모델을 통해 이를 수행한다. 성능 비교를 위해 제안하는 모델과 다른 모델들을 같은 데이터로 학습시키고, 예측결과를 비교하는 실험을 진행했다. 10번의 실험을 통해 4개의 딥러닝 모델의 정확도와 오차 범위를 비교하였다. 실험 결과에 따르면 제안하는 TATI 모델의 정확도가 0.85로 가장 높은 정확도를 보였고, 0.03으로 두 번째로 낮은 오차 범위를 보여 성능의 우수성을 확인하였다.
최근의 수자원공학 분야는 4차산업혁명과 더불어 비약적으로 발전된 딥러닝 기술을 활용한 시계열 수위 및 유량의 예측에 대한 관심이 높아지고 있다. 또한 시계열 자료의 예측이 가능한 LSTM 모형과 GRU 모형을 활용하여 수위 및 유량 예측을 수행하고 있지만 시간 변동성이 매우 큰 하천에서의 유량 예측 정확도는 수위 예측 정확도에 비해 낮게 예측되는 경향이 있다. 본 연구에서는 유량변동이 크고 하구에서의 조석의 영향이 거의 없는 한강의 팔당대교 관측소를 선택하였다. 또한, LSTM 모형과 GRU 모형의 입력 및 예측 자료로 활용될 유량변동이 큰 시계열 자료를 선택하였고 총 자료의 길이는 비교적 짧은 2년 7개월의 수위 자료 및 유량 자료를 수집하였다. 시간변동성이 큰 시계열 수위를 2개의 모형에서 학습할 경우, 2개의 모형 모두에서 예측되는 수위 결과는 관측 수위와 비교하여 적정한 정확도가 확보되었으나 변동성이 큰 유량 자료를 2개의 모형에서 직접 학습시킬 경우, 예측되는 유량 자료의 정확도는 악화되었다. 따라서, 본 연구에서는 급변하는 유량을 정확히 예측하기 위하여 2개 모형으로 예측된 수위 자료를 수위-유량관계곡선의 입력자료로 활용하여 유량의 예측 정확도를 크게 향상시킬 수 있었다. 마지막으로 본 연구성과는 수문자료의 별도 가공없이 관측 길이가 상대적으로 충분히 길지 않고 유출량이 급변하는 도시하천에서의 홍수예경보 자료로 충분히 활용할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.