• Title/Summary/Keyword: 예측정확도

Search Result 2,746, Processing Time 0.032 seconds

A Study on the Analysis of Validity and Reliability of the Delphi Forecasting in Korea (델파이 기술예측의 타당성과 신뢰성 분석에 관한 연구)

  • Gwon, Seong-Hoon;Hong, Soon-Ki
    • Journal of Technology Innovation
    • /
    • v.17 no.1
    • /
    • pp.97-117
    • /
    • 2009
  • The Delphi is a popular technique for forecasting based on the opinions of experts. It is important to know how valid and reliable the technique is. In this paper, we analyze accuracy and precision of the Delphi in IT and BT of Korea, and also discuss the relationship between them. As a result of the analysis, the accuracy and precision of the forecasts partly have significant differences according to their area and degree of expertise. Besides, significant correlation between the accuracy and precision of forecasts with high expertise is found. The result indicates that the precision of forecasts can be a criterion of the accuracy of them.

  • PDF

The Effect of Data Sparsity on Prediction Accuracy in Recommender System (추천시스템의 희소성이 예측 정확도에 미치는 영향에 관한 연구)

  • Kim, Sun-Ok;Lee, Seok-Jun
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.95-102
    • /
    • 2007
  • Recommender System based on the Collaborative Filtering has a problem of trust of the prediction accuracy because of its problem of sparsity. If the sparsity of a preference value is large, it causes a problem on a process of a choice of neighbors and also lowers the prediction accuracy. In this article, a change of MAE based on the sparsity is studied, groups are classified by sparsity and then, the significant difference among MAEs of classified groups is analyzed. To improve the accuracy of prediction among groups by the problem of sparsity, We studied the improvement of an accurate prediction for recommending system through reducing sparsity by sorting sparsity items, and replacing the average preference among them that has a lot of respondents with the preference evaluation value.

  • PDF

Accuracy Analysis of Dual-Polarization Radar Rainfall Forecast by Translation Model (이류모델의 이중편파 레이더 강우예보 정확도 분석)

  • Kim, Jeong-Bae;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.8-8
    • /
    • 2015
  • 기후변화에 따른 집중호우 및 태풍 발생의 증가로 강우레이더를 이용한 홍수예경보시스템의 필요성이 증대되고 있다. 그러나 현재 국내에서 주로 활용되고 있는 단일편파 레이더는 정확도의 한계로 인해 홍수예보 활용에 어려움을 야기해왔다. 최근에는 수직반사도, 차등반사도, 비차등반사도 등 다양한 변수 취득을 통해 강우입자의 형태를 더욱 정확하게 추정할 수 있는 이중편파 레이더의 활용이 높아지고 있다. 본 연구에서는 홍수예보 활용을 위해 이중편파 레이더 실황강우 및 예측강우의 정확도를 평가하고자 한다. 평가를 위해 비슬산 레이더 자료를 활용하였으며, 2012~2014년의 강우사상을 선정하였다. 단일 및 이중편파 레이더 강우를 각각 추정하고, 강우예측을 위해 추정된 레이더 강우를 이류모델(Translation model)에 연계하여 선행 6시간까지의 예측강우를 생산하였다. 강우의 탐지능력 평가를 위해 Hit rate를 이용하였으며, 레이더 관측반경 증가 및 강우강도의 증가에 따른 정확도 분석을 수행하였다. 강수추정 정확도 평가를 위해 상관계수와 평균제곱근 오차를 이용하였으며, 비슬산 강우레이더 100 km 반경 내에 속한 국토교통부 관할의 지상관측강우와비교하였다. 그 결과, 이중편파 레이더 실황강우가 단일편파 레이더에 비해 지상관측강우의 거동과 더욱 유사하게 나타났으며, 양적인 오차도 더 적은 것으로 확인되었다. 또한, 레이더 예측강우는 선행시간이 증가함에 따라 정확도가 감소하였으나, 선행시간 1시간까지는 활용이 가능하다고 판단된다.

  • PDF

Development of radar-based nowcasting method using Generative Adversarial Network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측 기법 개발)

  • Yoon, Seong Sim;Shin, Hongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.64-64
    • /
    • 2022
  • 이상기후로 인해 돌발적이고 국지적인 호우 발생의 빈도가 증가하게 되면서 짧은 선행시간(~3 시간) 범위에서 수치예보보다 높은 정확도를 갖는 초단시간 강우예측자료가 돌발홍수 및 도시홍수의 조기경보를 위해 유용하게 사용되고 있다. 일반적으로 초단시간 강우예측 정보는 레이더를 활용하여 외삽 및 이동벡터 기반의 예측기법으로 산정한다. 최근에는 장기간 레이더 관측자료의 확보와 충분한 컴퓨터 연산자원으로 인해 레이더 자료를 활용한 인공지능 심층학습 기반(RNN(Recurrent Neural Network), CNN(Convolutional Neural Network), Conv-LSTM 등)의 강우예측이 국외에서 확대되고 있고, 국내에서도 ConvLSTM 등을 활용한 연구들이 진행되었다. CNN 심층신경망 기반의 초단기 예측 모델의 경우 대체적으로 외삽기반의 예측성능보다 우수한 경향이 있었으나, 예측시간이 길어질수록 공간 평활화되는 경향이 크게 나타나므로 고강도의 뚜렷한 강수 특징을 예측하기 힘들어 예측정확도를 향상시키는데 중요한 소규모 기상현상을 왜곡하게 된다. 본 연구에서는 이러한 한계를 보완하기 위해 적대적 생성 신경망(Generative Adversarial Network, GAN)을 적용한 초단시간 예측기법을 활용하고자 한다. GAN은 생성모형과 판별모형이라는 두 신경망이 서로간의 적대적인 경쟁을 통해 학습하는 신경망으로, 데이터의 확률분포를 학습하고 학습된 분포에서 샘플을 쉽게 생성할 수 있는 기법이다. 본 연구에서는 2017년부터 2021년까지의 환경부 대형 강우레이더 합성장을 수집하고, 강우발생 사례를 대상으로 학습을 수행하여 신경망을 최적화하고자 한다. 학습된 신경망으로 강우예측을 수행하여, 국내 기상청과 환경부에서 생산한 레이더 초단시간 예측강우와 정량적인 정확도를 비교평가 하고자 한다.

  • PDF

A new method to predict the protein sequence alignment quality (단백질 서열정렬 정확도 예측을 위한 새로운 방법)

  • Lee, Min-Ho;Jeong, Chan-Seok;Kim, Dong-Seop
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.82-87
    • /
    • 2006
  • The most popular protein structure prediction method is comparative modeling. To guarantee accurate comparative modeling, the sequence alignment between a query protein and a template should be accurate. Although choosing the best template based on the protein sequence alignments is most critical to perform more accurate fold-recognition in comparative modeling, even more critical is the sequence alignment quality. Contrast to a lot of attention to developing a method for choosing the best template, prediction of alignment accuracy has not gained much interest. Here, we develop a method for prediction of the shift score, a recently proposed measure for alignment quality. We apply support vector regression (SVR) to predict shift score. The alignment between a query protein and a template protein of length n in our own library is transformed into an input vector of length n +2. Structural alignments are assumed to be the best alignment, and SVR is trained to predict the shift score between structural alignment and profile-profile alignment of a query protein to a template protein. The performance is assessed by Pearson correlation coefficient. The trained SVR predicts shift score with the correlation between observed and predicted shift score of 0.80.

  • PDF

Comparison of Price Predictive Ability between Futures Market and Expert System for WTI Crude Oil Price (선물시장과 전문가예측시스템의 가격예측력 비교 - WTI 원유가격을 대상으로 -)

  • Yun, Won-Cheol
    • Environmental and Resource Economics Review
    • /
    • v.14 no.1
    • /
    • pp.201-220
    • /
    • 2005
  • Recently, we have been witnessing new records of crude oil price hikes. One question which naturally arises would be the possibility and accuracy of forecasting crude oil prices. This study tries to answer the relative predictability of futures prices compared to the forecasts based on experts system. Using WTI crude oil spot and futures prices, this study performs simple statistical comparisons in forecasting accuracy and a formal test of differences in forecasting errors. According to statistical results, WTI crude oil futures market turns out to be equally efficient relative to EIA experts system. Consequently, WTI crude oil futures market could be utilized as a market-based tool for price forecasting and/or resource allocation for both of petroleum producers and consumers.

  • PDF

Towards Prediction of Unsteady Turbulent Flow over a Square Cylinder using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 정사각주 주위의 비정상 난류유동의 예측)

  • Lee Sangsan
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.47-54
    • /
    • 1996
  • 비유선형 물체 주위의 유동은 정체유동, 경계층 박리 및 재부착, 주기적 와열의 생성등의 복잡한 유동현상이 공존한다. 이와 같은 유동의 2-방정식 난류모델을 이용한 정확한 예측은 일반적으로 불가능 하다고 인식되어 왔으나, 본 연구에서는 기존의 비교적 단순한 난류모델을 활용한 정사각주 주위의 비정상 난류유동의 예측 가능성을 체계적으로 규명하였다. 적절한 난류모델의 선정과 더불어 시간 정확도, 공간 정확도 및 대류항 처리법 등이 해석의 결과에 미치는 영향을 살펴 보았다. 기존의 표준 κ-ε모델은 정체점 주위에서 난류생성항의 과도한 예측으로 말미암아 재부착 및 와열생성의 정확한 예측이 불가능 하였으나, RNG κ-ε 모델을 사용한 경우 이와 같은 현상을 제거 할 수 있었다. 그러나 이 경우에도 예측의 정확도가 시간 증분, 격자의 크기 및 대류항 처리법 등에 영향을 받았으며, 특별히 대류항 처리법에 따라 상당히 민감하게 변하는 것을 알 수 있었다.

  • PDF

Improving Sparsity Problem of Collaborative Filtering in Educational Contents Recommendation System (협업 여과의 희소성을 개선한 교육용 컨텐츠 추천 시스템)

  • 이용준;이세훈;왕창종
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.830-832
    • /
    • 2003
  • 본 논문에서는 교육용 컨텐츠 추천시스템의 정확도를 향상시키고자 사용자 모델 정보를 활용하여 기존의 협업여과 방법의 유사도 재산을 보완함으로써 추천의 정확도를 향상시키는 방법을 제안하고자 한다. 협업여과방법은 사용자의 평가와 비슷한 선호도를 가지고 다른 사용자의 평가를 기반으로 제품이나 항목을 예측하고 이를 사용자에게 추천한다. 그러나 협업여과방법은 일정 수 이상의 상품이나 항목에 대한 평가가 이루어져야 하며, 사용자의 평가가 적은 경우 희소성으로 인한 평가의 정확도가 낮아지는 단점을 기지고 있다. 본 논문에서는 인구 통계 정보를 이용한 가상 평가 점수를 반영하여 유사도 계산시 희소성을 낮춰 예측의 정확도를 향상시키고자 한다.

  • PDF

Line Based Intra $16{\times}16$ Prediction in H.264/AVC for High Resolution Video Coding (고화질 비디오 부호화를 위한 H.264/AVC 라인 기반 인트라 $16{\times}16$ 예측 방법)

  • Choi, Jung-Ah;Kim, Nac-Woo;Lee, Byung-Tak;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.63-66
    • /
    • 2009
  • 기존의 H.264/AVC 비디오 표준은 고화질 비디오 부호화를 지원하지만 고해상도에 특화된 요소 기술이 도입되지 않아 만족할만한 성능을 보이지 못한다. 현존하는 동영상 압축 표준 중 가장 뛰어난 H.264/AVC 표준의 인트라 $16{\times}16$ 예측은 매크로블록에 인접한 최대 33개의 주변 화소를 이용하여 매크로블록에 속한 256개의 화소 값을 예측한다. 특히, 전체 예측 모드 중 수직과 수평 예측 모드에서는 16개의 수직 또는 수평 위치에 위치한 주변 화소로 전체 매크로블록 내의 화소 값을 예측하므로 매크로 블록의 끝으로 갈수록 예측의 정확도가 떨어져 부호화 비트가 증가한다. 고화질 영상에서는 인트라 $16{\times}16$ 모드로 부호화되는 블록이 많으므로 수행되므로 인트라 $16{\times}16$ 예측의 정확도를 높일 수 있는 기술이 필요하다. 본 논문에서는 기존의 H.264/AVC의 예측 방법보다 예측 정확도가 높은 새로운 라인 기반 $16{\times}16$ 인트라 예측 방법을 제안한다. 일반적으로 편평한 특성을 보이는 인트라 $16{\times}16$ 블록이라도 좀 더 가까운 화소를 참조 화소로 사용하면 예측의 정확도를 높여 부호화 비트를 줄일 수 있다. 이를 이용하여 제안하는 알고리즘에서는 인트라 $16{\times}16$ 블록에서 16개 화소 한 줄을 단위로 예측 및 부호화를 수행한다. 1080p HD급 테스트 영상을 이용하여 실험한 결과, 기존의 H.264/AVC FRExt High 프로파일에 비해 평균 약 6.92%의 부호화 비트를 감소시킬 수 있음을 보였다.

  • PDF

Prediction of module temperature and photovoltaic electricity generation by the data of Korea Meteorological Administration (데이터를 활용한 태양광 발전 시스템 모듈온도 및 발전량 예측)

  • Kim, Yong-min;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • In this study, the PV output and module temperature values were predicted using the Meteorological Agency data and compared with actual data, weather, solar radiation, ambient temperature, and wind speed. The forecast accuracy by weather was the lowest in the data on a clear day, which had the most data of the day when it was snowing or the sun was hit at dawn. The predicted accuracy of the module temperature and the amount of power generation according to the amount of insolation decreased as the amount of insolation increased, and the predicted accuracy according to the ambient temperature decreased as the module temperature increased as the ambient temperature increased and the amount of power generated lowered the ambient temperature. As for wind speed, the predicted accuracy decreased as the wind speed increased for both module temperature and power generation, but it was difficult to define the correlation because wind speed was insignificant than the influence of other weather conditions.