• Title/Summary/Keyword: 예측성

Search Result 16,296, Processing Time 0.049 seconds

A Study on the Prediction of Long-Term Settlement by the Modified Hyperbolic Method (수정된 쌍곡선 법을 이용한 장기 침하량 예측)

  • Yoo, Han-Kyu;Kim, Jong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.163-172
    • /
    • 2000
  • 최종침하 예측기법들은 분석상 간단명료하고 경제적인 기법이라 현장에서 널리 이용되고 있지만, 현장계측상의 문제들이 다분히 있는 실측치에 크게 의존함으로써 설계단계에서 침하량예측에 분석가의 주관적 판단이 큰 변수로 작용할 수 있으므로 객관성이 결여되는 결점을 안고 있다. 그 중 쌍곡선법(Hypervolic Method)이 가장 널리 쓰이고 있지만, 현장 계측치에 따라 가정 기본식의 선형성이 다소 뚜렷하지 않아 분석가에 따라 해석결과가 다르게 나타날 수 있으므로, 기술 적용상의 어려움과 경제적 비용을 더욱 가중시키는 결과를 초래할 수 있다. 따라서, 본 연구에서는 현장 계측자료 분석에 있어서 대표적으로 널리 적용되고 있는 쌍곡선법의 기본 가정식의 선형성 문제에 주안점을 두어 기본 가정식의 선형성을 확보하고, 그 선형구간을 확장한 새로운 침하예측기법을 제안하였다. 성토완료 직후의 현장 자료를 배수재가 설치된 지역과 배수재가 설치되지 않은 지역으로 구분하여 최종 1차 압밀침하량, 수직압밀계수 등을 기존예측기법 및 현장계측자료와 비교 검토하여 제안된 침하예측기법의 적용성을 검증하였다.

  • PDF

이론적 Biodegradability를 토대로 한 토양 내 PAH의 Bioavailability 예측 방안

  • 류혜림;남경필
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.266-268
    • /
    • 2004
  • 대부분의 유기물은 토양의 특성에 따라 그 흡착 및 탈착 양상이 다르며 이는 오염물질의 토양에서의 지속성 및 이동성에 영향을 미치게 된다. 본 연구에서는 대표적인 유기오염물인 PAH(Polycyclic Aromatic Hydrocarbon)에 대하여 흡착 및 탈착과 오염물질의 미생물 분해 등을 통한 제거 기작과의 연관성을 연구하고자 한다. PAH의 이론적인 미생물분해반응식은 열역학적 이론을 바탕으로 하는 반쪽반응방법을 사용하여 예측할 수 있다. 오염물과 토양의 특성에 따른 흡착 및 탈착 양상을 파악하고, 앞에서 구한 미생물 분해반응식을 이용하여 이론적 분해량을 예측하면 오염물의 생물학적 이용성과 노출량을 결정할 수 있다 이를 위하여 본 연구에서는 토양의 여러 특성을 분석한 후, PAH의 미생물 분해량 및 분해율을 측정하고자 한다. 실험을 통하여 실제 토양에서 측정된 PAH 분해량과 위의 이론적 분해량 예측 결과 사이의 관계를 토양의 특성을 이용하여 설명할 수 있으며 나아가 오염물질의 생물학적이용성에 관하여 개략적으로 일반화된 예측 모형을 얻을 수 있을 것이다. 본 연구를 통하여 토양과 유기오염물질, 미생물간의 상호 작용에 대한 이해를 높이고 보다 실질적인 유기오염물의 생물학적 이용성을 예측할 수 있는 방안을 마련할 수 있을 것이다.

  • PDF

Predicting Forest Fire in Indonesia Using APCC's MME Seasonal Forecast (MME 기반 APCC 계절예측 자료를 활용한 인도네시아 산불 예측)

  • Cho, Jaepil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.7-7
    • /
    • 2016
  • 인도네시아 산불에 의한 연무는 동남아시아 인접한 국가들에 있어서 심각한 환경문제 중 하나이다. 국제적으로 심각한 문제를 야기하는 인도네시아의 산불은 건조기에 강수량이 적게 내리는 극심한 가뭄 조건에서 발생한다. 건조기 강수량을 모니터링 하는 것은 산불 발생 가능성을 예측하기 위해 중요하지만 산불을 사전에 예방하고 영향을 최소화하기에는 부족하다. 따라서 산불에 대한 선제적 사전예방을 위해서는 수개월의 선행예측 기간을 갖는 조기경보 시스템이 절실하다. 따라서 본 연구는 인도네시아 산불에 대한 선제적 대응을 위한 강수량 예측시스템을 개발하고 예측성을 평가하여 동남아시아 지역의 화재 연무 조기경보 시스템의 시제품(Prototype)을 개발하는데 있다. 강수량 예측을 위해서 APEC 기후센터의 계절예측정보의 활용 정도에 따라서 4가지 서로 다른 방법을 통합하여 사용하였다. 예측정보 기반의 방법들로는 대상지역의 강수량 예측을 위해서 대상 지역 상공의 계절예측 강수자료를 보정을 통해 직접적으로 사용하는 SBC (Simple Bias Correction) 방법과 대상 지역 상공의 강수 예측자료를 사용하는 대신에 지역 강수량과 높은 상관 관계를 보이는 다른 지역의 대리변수를 예측인자로 사용하는 MWR (Moving Window Regression) 방법이 있다. 또한 예측자료의 사용 없이 과거자료 기반의 기후지수(Climate Index) 중에서 지체시간을 고려하여 지역 강수량과 높은 상관관계를 갖는 경우 예측에 활용하는 관측자료 기반의 CIR (Climate Index Regression) 방법과 예측기반 MWR과 관측기반의 CIR 방법에서 선정된 예측인자를 동시에 활용하는 ITR (Integrated Time Regression) 방법이 사용되었다. 장기 강수량 예측은 보르네오 섬의 4개 지역에서 3개월 이하의 선행예측기간에 대하여 0.5 이상의 TCC (Temporal Correlation Coefficient)의 값을 보여 양호한 예측성능을 보였다. 예측된 강수량 자료는 위성기반 관측 강수량 및 관측 탄소 배출량 관계에서 결정된 강수량의 임계값과의 비교를 통해 산불발생 가능성으로 환산하였다. 개발된 조기경보 시스템은 산불 발생에 가장 취약한 해당지역의 건조기(8월~10월) 강수량을 4월부터 예측해 산불 연무에 대한 조기경보를 수행한다. 개발된 화재 연무조기경보 시스템은 지속적인 개선을 통해 현장 실효성을 높여 동남아국가 정부의 화재 및 산림관리자들에게 보급함으로써 동남아의 화재 연무로 인한 환경문제 해결에 기여할 수 있으리라 판단된다.

  • PDF

Valuing the Risks Created by Road Transport Demand Forecasting in PPP Projects (민간투자 도로사업의 교통수요 예측위험의 경제적 가치)

  • Kim, Kangsoo;Cho, Sungbin;Yang, Inseok
    • KDI Journal of Economic Policy
    • /
    • v.35 no.4
    • /
    • pp.31-61
    • /
    • 2013
  • The purpose of this study is to calculate the economic value of transport demand forecasting risks in the road PPP project. Under the assumption that volatility of the road PPP project value occurs only in regard with uncertainty of traffic volume forecasting, this study calculates the economic value of the traffic forecasting risks in the case of the road PPP project. To that end, forecasted traffic volume is assumed to be a stochastic variable and to follow the Geometric Brownian motion as time passes. In particular, this study attempts to differentiate itself from existing studies that simply use an arbitrary assumption by presenting the application of different traffic volume growth volatility and the rates before and after the ramp-up period. Analysis of the case projects reveals that the risk premium related to traffic volume forecast of the project turns out as 7.39~8.30%, without considering option value-such as minimum revenue guarantee-while the project value volatility caused by transport demand forecasting risks is 17.11%. As the discount rate grows higher, the project value volatility tends to decrease and volatility in project value is always suggested to be larger than that in transport volume influenced by leverage effect due to fixed expenditure. The market value of transport demand forecasting risk-calculated using the project value volatility and risk premium-is analyzed to be between 0.42~0.50, implying that a 1% increase or decrease in the transport amount volatility would lead to a 0.42~0.50% increase or decrease in risk premium of the project.

  • PDF

Hybrid Value Predictor using Dynamic Classification (동적 분류를 이용한 하이브리드 결과 값 예측기)

  • Sin, Yeong-Ho;Yun, Seong-Ryong;Jo, Yeong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.11
    • /
    • pp.899-907
    • /
    • 2000
  • 슈퍼스칼라 프로세서의 성능을 향상시키기 위해서는 데이터 종속성에 의한 장애를 제거해야 한다. 최근 여러 논문들은 이러한 데이터 종속성을 제거하기 위해서 명령어의 결과 값을 예상하는 메커니즘을 제안하였다. 이러한 예상 메커니즘 중 여러 예측기를 혼합해서 사용하는 하이브리드 방법은 각 하나의 예측기만을 사용하는 방법보다 더 좋은 성능을 얻을 수 있다. 그러나 그러한 하이브리드 예측기는 명령어를 중복해서 저장하여 많은 하드웨으 크기를 요구한다. 본 논문에서는 여러 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 하이브리드 예측 메커니즘을 제안한다. 또한 예상이 자주 틀리는 명령어를 동적으로 찾아내어 예상하지 않음으로서 잘못 예상시 발생하는 misprediction 페널티를 낮추고 예상 정확도를 높인다. 시뮬레이션 결과 SPECint95 벤치마크프로그램에 대해 제안한 하이브리드 예측기에서 예측율은 평균 79%에서 90%로 향상하였고, misprediction rate는 평균 12%에서 2%로 낮추었다.

  • PDF

Probabilistic Daecheong Dam Streamflow Prediction using Weather Outlook Weighted Ensemble Streamflow Prediction (확률론적 통계분석을 이용한 대청댐 유입량 예측)

  • Lee, Sang-Jin;Kim, Jeong-Kon;Kim, Joo-Cheol;Woo, Dong-Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.303-303
    • /
    • 2011
  • 효율적인 수자원 관리를 위해서는 미래 수문자료의 예측치에 대한 구간을 추정하여 미래에 관측될 자료에 대한 정보를 얻는 문제는 어렵지만 중요한 부분에 해당한다. 특히 중장기 유량예측은 입력변수의 불확실성이 크므로 확률론적 방법을 적용한 예측이 유리하다. 본 연구에서는 SSARR 모형을 이용하여 현재 유역의 상태에 과거에 재현되었던 강우를 결합한 앙상블 유출시나리오를 생성하였다. 그리고 대청댐 월 유입량에 대한 확률론적 예측방안을 제시하기위하여 과거 시나리오의 관측 ESP(Ensemble Streamflow Prediction)확률 및 Croley방법, PDF-Ratio방법을 한국의 기상예측정보 실정에 맞는 가중치 부여방안으로 적용하여 분석하였다. 2010년도 상반기를 기준으로 각 분석 기법별 정확성을 검증한 결과 Croley, PDF-Ratio 등 기상전망을 가중치로 부여한 확률론적 예측기법의 효용성을 확인하였다.

  • PDF

Performance Evaluation of High-Level Ozone Prediction Model Based on the Confidence Level Test (신뢰수준평가에 기반한 고농도 오존 예측모델의 성능평가)

  • 정재룡;안항배;송치권;배현;전병희;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.195-198
    • /
    • 2002
  • 고농도오존이 발생되는 원인과 환경적 요인의 상호관계를 모델링하기 위해 신경회로 망과 같은 지능제어 기법들이 많이 적용되어 왔다 분석과 모델링을 위해 유전자 알고리즘과 같은 최적화 방법을 적용하기도 하지만, 고농도 오존이 발생되는 메커니즘이 매우 복잡하고, 비선형적이며, 패턴파악이 어렵기 때문에 고농도 오존의 예측 모델링에는 여전히 문제점이 있다 따라서 본 논문에서는 신뢰수준과 신뢰구간을 이용하여 초농도 오존을 예측할 수 있는 모델링 방법을 서술하였다 예측값의 신뢰수준의 평가는 예측에 대한 실측값을 구하여 신뢰구간내의 데이터의 개수를 파악함으로써 신뢰성을 평가할 수 있다. 또한 이 테스트는 우리가 가지고 있지 않은 데이터에 대한 유효성을 평가하는데 적용될 수 있다 그리고 본 논문에서는 GMDH(Group Method of data handling)의 전형적인 알고리즘에 바탕을 두고 있는 DPNN(Dynamic Polynomial Neural Network)를 이용하여 예측 모델을 구성하였다. DPNN은 데이터 해석이 용이하고 비선형적인 동적 시스템 예측에 유용하게 적용될 수 있는 장점을 가지고 있다.

주기성을 고려한 GPS 세슘원자시계의 예측 모델 개발

  • Heo, Yun-Jeong;Jo, Jeong-Ho;Ju, Jeong-Min;Heo, Mun-Beom;Sim, Eun-Seop
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.35.4-35.4
    • /
    • 2010
  • GPS 위성 중 세슘시계를 보유한 Block IIA 위성은 시계 성능의 저하로 시계 예측 모델의 정확도가 떨어지고 있다. 이 연구에서는 세슘원자 위성시계의 성능을 살펴보고 예측 정확도를 높일 수 있는 모델을 제시하고자 한다. IGS Final 위성시계자료를 수집하여 Allan variance를 통해 각 위성별 안정도를 확인하고, Fourier 변환을 통해 각 위성별 주기성을 살펴본다. 예측 모델의 계수를 결정하기 위해 예측 하루 전의 IGS Rapid 자료를 이용하고, 3시간, 6시간, 12시간, 24시간 간격의 예측 결과들을 IGS Final 결과와 비교하여 예측 모델의 정확도를 확인한다. 또한 IGS에서 제공하고 있는 Ultra-Rapid 예측자료와 비교하여 실시간 정밀 위치 결정 분야에 활용 가능성을 확인한다.

  • PDF

Forecast of Precipitation using Radar Data and Deep Learning for Flash Flood Prediction (돌발홍수 예측을 위한 레이더자료와 기계학습을 이용한 강수 예측)

  • Noh, Hui-Seong;Kang, Na-Rae;Hwang, Suk-Hwan;Lee, Dong-Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.179-179
    • /
    • 2019
  • 전 세계적으로 빈번히 발생하고 있는 홍수, 그중에서도 국지성 집중호우로 인한 돌발홍수에 대응하려면 정확한 강수예측자료를 빠르게 생산하는 것이 필수적이다. 본 연구에서는 최근 딥러닝(머신러닝)을 이용한 강수예측방법에 대하여 고찰하고, 특히 레이더 이미지를 기반으로 한 강수예측방법에 중점을 두고 그 적용성을 살펴보았다. 그 결과 딥러닝(머신러닝)을 이용한 강수예측자료는 예측의 정확성을 높일 수 있을 뿐 아니라 돌발홍수에 대응할 수 있는 자료로 충분히 활용할 수 있음을 확인하였다.

  • PDF

Prediction of Snow Damage Using Machine Learning Technique (머신러닝 기법을 이용한 대설피해 예측 및 적합성 검토)

  • Lee, Hyeong Joo;Chung, Gunhui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.192-192
    • /
    • 2020
  • 취약성 분석의 결과로 폭설에 의한 기후노출은 현재에는 강원권이 가장 취약한 것으로 나타났다. 그러나 미래에는 강원권, 충청권, 호남권을 연결하는 축으로 취약지역이 확대될 것으로 전망된다. 본 연구에서는 다양한 머신러닝 기법을 이용하여 대설피해 예측을 실시하였다. 머신러닝 기법으로는 로지스틱회귀모형, 서포트벡터 머신, 의사결정트리 모형을 적용하였다. 종속변수로 대설피해액 자료를 이용하였고, 독립변수로 기상관측자료, 사회·경제적 요소를 사용하였다. 결과적으로 기존에 사용했던 다중회귀모형과 머신러닝 기법으로 예측한 예측력을 비교 및 분석하였고, 예측력이 가장 높은 머신러닝 기법을 제시하였다. 본 연구에서 대설피해 예측을 위해 사용된 예측력이 가장 높은 기법을 활용하여 대설피해를 예측한다면, 미래에 전국적으로 확대될 대설피해에 대해 효과적으로 대비할 수 있을 것으로 기대된다.

  • PDF