• Title/Summary/Keyword: 예측성능 개선

Search Result 977, Processing Time 0.033 seconds

Improvement Plan of Excavation Performance Based on Shield TBM Performance Prediction Models and Field Data (쉴드 TBM 성능예측모델과 굴진자료 분석을 통한 굴진성능 개선방안)

  • Jung, Hyuksang;Kang, Hyoungnam;Choi, Jungmyung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.2
    • /
    • pp.43-52
    • /
    • 2010
  • Shield method is the tunnel boring method that propels a steel cylinder in the ground and excavates tunnels at once. After Marc Isambard Brunel started using the method for the Thames Riverbed Tunnel excavation in London, many kinds of TBM (Tunnel Boring Machine) developed and applied for the construction of road, railway, electricity channel, pipeline, etc. In comparison with NATM concept that allows to observe ground condition and copes with difficulty. The machine selected before starting construction is not able to be changed during construction in shield TBM. Therefore the machine should be designed based on the ground survey result and experiment, so that the tunnel might be excavated effectively by controlling penetration speed, excavation depth and cutter head speed according to the ground condition change. This research was conducted to estimate penetration depth, excavate speed, wear of disc cutter on Boondang Railway of the Han Riverbed Tunnel ground condition by TBM performance prediction models such as NTNU, $Q_{TBM}$, Total Hardness, KICT-SNU and compare the estimated value with the field data. The estimation method is also used to analyze the reason of poor excavation efficiency at south bound tunnel.

Integrated Multiple Simulation for Optimizing Performance of Stock Trading Systems based on Neural Networks (통합 다중 시뮬레이션에 의한 신경망 기반 주식 거래 시스템의 성능 최적화)

  • Lee, Jae-Won;O, Jang-Min
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.127-134
    • /
    • 2007
  • There are many researches about the intelligent stock trading systems with the help of the advance of the artificial intelligence such as machine learning techniques, Though the establishment of the reasonable trading policy plays an important role in the performance of the trading systems most researches focused on the improvement of the predictability. Also some previous works, which treated the trading policy, treated the simplified versions dependent on the predictors in less systematic ways. In this paper, we propose the integrated multiple simulation' as a method of optimizing trading performance of stock trading systems. The propose method is adopted in the NXShell a development environment for neural network based stock trading systems. Under the proposed integrated multiple simulation', we simulate the multiple tradings for all combinations of the neural network's outputs and the trading policy parameters, evaluate the learning performance according to the various metrics and establish the optimal policy for a given prediction module based on the resulting performance. In the experiment, we present the trading policy comparison results using the stock value data from the KOSPI and KOSDAQ.

On sampling algorithms for imbalanced binary data: performance comparison and some caveats (불균형적인 이항 자료 분석을 위한 샘플링 알고리즘들: 성능비교 및 주의점)

  • Kim, HanYong;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.681-690
    • /
    • 2017
  • Various imbalanced binary classification problems exist such as fraud detection in banking operations, detecting spam mail and predicting defective products. Several sampling methods such as over sampling, under sampling, SMOTE have been developed to overcome the poor prediction performance of binary classifiers when the proportion of one group is dominant. In order to overcome this problem, several sampling methods such as over-sampling, under-sampling, SMOTE have been developed. In this study, we investigate prediction performance of logistic regression, Lasso, random forest, boosting and support vector machine in combination with the sampling methods for binary imbalanced data. Four real data sets are analyzed to see if there is a substantial improvement in prediction performance. We also emphasize some precautions when the sampling methods are implemented.

Performance Improvement using Effective Task Size Calculation in Dynamic Load Balancing Systems (동적 부하 분산 시스템에서 효율적인 작업 크기 계산을 통한 성능 개선)

  • Choi, Min;Kim, Nam-Gi
    • The KIPS Transactions:PartA
    • /
    • v.14A no.6
    • /
    • pp.357-362
    • /
    • 2007
  • In distributed systems like cluster systems, in order to get more performance improvement, the initial task placement system precisely estimates and correctly assigns the resource requirement by the process. The resource-based initial job placement scheme needs the prediction of resource usage of a task in order to fit it to the most suitable hosts. However, the wrong prediction of resource usage causes serious performance degradation in dynamic load balancing systems. Therefore, in this paper, to resolve the problem due to the wrong prediction, we propose a new load metric. By the new load metric, the resource-based initial job placement scheme can work without priori knowledge about the type of process. Simulation results show that the dynamic load balancing system using the proposed approach achieves shorter execution times than the conventional approaches.

Prediction Oil and Gas Throughput Using Deep Learning

  • Sangseop Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.155-161
    • /
    • 2023
  • 97.5% of our country's exports and 87.2% of imports are transported by sea, making ports an important component of the Korean economy. To efficiently operate these ports, it is necessary to improve the short-term prediction of port water volume through scientific research methods. Previous research has mainly focused on long-term prediction for large-scale infrastructure investment and has largely concentrated on container port water volume. In this study, short-term predictions for petroleum and liquefied gas cargo water volume were performed for Ulsan Port, one of the representative petroleum ports in Korea, and the prediction performance was confirmed using the deep learning model LSTM (Long Short Term Memory). The results of this study are expected to provide evidence for improving the efficiency of port operations by increasing the accuracy of demand predictions for petroleum and liquefied gas cargo water volume. Additionally, the possibility of using LSTM for predicting not only container port water volume but also petroleum and liquefied gas cargo water volume was confirmed, and it is expected to be applicable to future generalized studies through further research.

Utility of Deep Learning Model for Improving Dam and Reservoir Operation: A Case Study of Seonjin River Dam (섬진강 댐의 수문학적 예측을 위한 딥러닝 모델 활용)

  • Lee, Eunmi;Kam, Jonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.483-483
    • /
    • 2022
  • 댐과 저수지의 운영 최적화를 위한 수문학적 예보는 현재 수동적인 댐 운영이 주를 이루면서 활용도가 높지 않다. 불확실한 기후변화나 기후재난 상황에서 우리 사회에 악영향을 최소화하기 위해 선제적으로 대응/대비할 수 있는 댐 운영 방안이 불가피하다. 강우량 예측 기술은 기후변화로 인해 제한적인 상황이다. 실례로, 2020년 8월에 섬진강의 댐이 극심한 집중 강우로 인해 무너지는 사태가 발생하였고 이로 인해 지역사회에 막대한 경제적 피해가 발생하였다. 선제적 댐 방류량 운영 기술은 또한 환경적인 변화로 인한 영향을 완화하기 위해 필요한 것이다. 제한적인 기상 예보 기술을 극복하고자 심화학습이나 강화학습 같은 인공지능 모델들의 활용성에 대한 연구가 시도되고 있다. 따라서 본 연구는 섬진강 댐의 시간당 수문 데이터를 이용하여 댐 운영을 위한 심화학습 모델을 개발하고 그 활용도를 평가하였다. 댐 운영을 위한 심화학습 모델로서 시계열 데이터 예측에 적합한 Long Sort Term Memory(LSTM)과 Gated Recurrent Unit(GRU) 알고리즘을 구축하고 댐 수위를 예측하였다. 분석 자료는 WAMIS에서 제공하는 2000년부터 2021년까지의 시간당 데이터를 사용하였다. 입력 데이터로서 시간당 유입량, 강우량과 방류량을, 출력 데이터로서 시간당 수위 자료를 각각 사용하였으며. 결정계수(R2 Score)를 통해 모델의 예측 성능을 평가하였다. 댐 수위 예측값 개선을 위해 하이퍼파라미터의 '최적값'이 존재하는 범위를 줄여나가는 하이퍼파라미터 최적화를 두 가지 방법으로 진행하였다. 첫 번째 방법은 수동적 탐색(Manual Search) 방법으로 Sequence Length를 24, 48, 72시간, Hidden Layer를 1, 3, 5개로 설정하여 하이퍼파라미터의 조합에 따른 LSTM와 GRU의 민감도를 평가하였다. 두 번째 방법은 Grid Search로 최적의 하이퍼파라미터를 찾았다. 이 두가지 방법에서는 같은 하이퍼파라미터 안에서 GRU가 LSTM에 비해 더 높은 예측 정확도를 보였고 Sequence Length가 높을수록 정확도가 높아지는 경향을 보였다. Manual Search 방법의 경우 R2가 최대 0.72의 정확도를 보였고 Grid Search 방법의 경우 R2가 0.79의 정확도를 보였다. 본 연구 결과는 가뭄과 홍수와 같은 물 재해에 사전 대응하고 기후변화에 적응할 수 있는 댐 운영 개선에 도움을 줄 수 있을 것으로 판단된다.

  • PDF

Development of Rainfall-Runoff Prediction Model for Self Organizing Map (SOM에 강우-유출 예측모형 개발에 관한 연구)

  • Kim, Yong-Gu;Jin, Young-Hoon;Lee, Han-Min;Park, Sung-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.301-306
    • /
    • 2006
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저..갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 선행 유출량의 지속성을 갖는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 도입하여 예측모형의 전처리 과정으로 이용하였다. 이는 기존의 인공신경망 모형이 하나의 모형을 구성하여 유출량의 전 범위에 해당하는 자료를 예측하는 방법을 개선한 것으로 SOM에 의해 패턴이 분류된 강우-유출관계의 각 패턴별 예측모형을 통해 분류된 자료들의 예측을 수행하는 방법이다. 이와 같이 SOM을 강우-유출예측모형의 전처리과정으로 이용함으로서 기존의 인공신경망 연구에서 야기된 현상들을 해결할 수 있었고, 예측력 또한 기존의 인공신경망 모형의 결과에 비해 우수하였다.

  • PDF

Seismic Evaluation of Low-rise RC Building in korea (국내 저층구조물의 내진성능평가)

  • Park, Jin Hwa;Ahn, Tea Sang;Seo, Hyun Sik;Kim, Sang Dea
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.29-29
    • /
    • 2011
  • 국내에서 기존건축물의 내진성능평가 기법이 연구되기 시작한지 20여 년간 다양한 평가방법이 제안되었다. 그러나, 제안된 평가방법은 미국이나 일본의 평가 방법을 도입 및 수정하는 내용이 주가 되어 국내실정에 맞지 않는 부분도 많이 발견되었다. 따라서 국내에서 제안된 기존 건축물의 내진성능 평가기법, 지진피해예측에 근거한 보강건축물의 합리적인 선정방법 및 이들 건축물에 적합한 내진보강방법 등의 연구는 아직까지 초보적인 단계라고 할 수 있다. 이에 본 연구의 목적은 이러한 평가 기법을 적용한 국내 저층구조물의 내진성능을 평가하는 것이다. 저층구조물의 내진성능을 평가하기 위하여 1988년 내진설계가 도입되기 이전에 건립된 4층 규모의 학교구조물을 해석대상 구조물로 선정하였다. 대상 해석구조물의 내진성능평가는 일본의 내진성능 평가법을 참고하여 평가절차가 다소 복잡한 부분을 국내 실정에 맞게 개선시킨 내진화 우선도 평가방법과 정밀한 내진성능을 평하는 방법으로 세계적으로 널리 사용되고 있는 ATC-40 성능평가방법에서 등가단자유 모델로 변환 과정에서 등가유효감쇠 및 등가유효주기 산정 관계식의 문제점을 개선한 FEMA-440의 선형화 성능평가방법(Linearization Method)을 사용하여 구조물의 성능을 평가하였다. 내진 성능 평가를 위해 현재 전 세계적으로 널리 사용되고 있는 구조물 비선형 전용 해석 프로그램인 Perform-3D를 이용하여 해석을 수행하였다. 본 연구를 통해 기존 저층구조물로 선정한 학교구조물에 대한 내진성능을 평가한 결과, 내진화 우선도 평가법 및 FEMA-440의 내진성능 평가는 유사한 경향의 결과를 나타내었고, 두 평가결과를 요약하면 Y방향은 보와 기둥에 끼인 조적벽체의 영향으로 별도의 내진성능이 향상 보강이 필요없으나, X방향은 창문하부 허리 조적벽 등의 영향으로 다소 취성적인 내진성능을 보유하고 있어 충분한 내진성능 확보를 위한 추가적인 보강이 필요한 것으로 판단된다.

  • PDF

Performance Improvement of Satellite Broadcasting System in Rain Attenuation (강우 감쇠가 존재하는 위성 방송 시스템의 성능 개선)

  • Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.356-363
    • /
    • 2006
  • The demand for digital multimedia service using Ka band satellite communication are growing rapidly. So, in this paper, we have analyzed rain attenuation with typical model, and proposed prediction model of rain attenuation in high frequency(20 GHz). This paper illustrates Korea rain attenuation characteristics at the Ka band Koreasat beacon frequency based on the theoretical and empirical approaches and seek for efficient techniques by rain attenuation estimate and analyzed performance of adaptive modulation system. Propose prediction model of rain attenuation and parameter of satellite link can be available for the Ka band satellite communication.

  • PDF

Associative User Group Method using Attribute Information in Personalized Recommendation System (개인화 추천 시스템에서 속성 정보를 이용한 연관 사용자 군집 방법)

  • Han, Kyung-Soo;Cho, Dong-Ju;Jung, Kyung-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.169-173
    • /
    • 2006
  • 유비쿼터스 상거래에서 사용자가 정보를 효율적으로 이용할 수 있도록 제어하고 필터링하는 일을 도와주는 개인화된 추천 시스템이 등장하였다. 더 나아가서는 사용자가 원하는 아이템을 예측하고 추천해주며, 이를 위해 협력적 필터링 기술을 적용하고 있다. 이는 사용자의 성향에 맞는 아이템을 예측하고 추천하기 위하여 비슷한 선호도를 가지는 사용자들 간의 유사도 가중치를 계산한다. 본 논문에서는 속성정보에 대한 사용자의 선호도를 고려하지 않은 문제점을 개선하기 위해서 속성정보를 이용한 연관 사용자의 선호도를 협력적 필터링 기술에 반영함으로써 추천의 정확도를 높이고자 한다. 그리고 협력적 필터링의 {연관 사용자-아이템} 행렬에서 사용자들 간의 연관 관계를 유지하면서 차원 수를 감소시키기 위해 ARHP 알고리즘을 이용하여 연관 사용자 군집을 한다. 제안된 방법의 성능 평가를 하기 위해 사용자가 아이템에 대해서 평가한 MovieLens 데이터 집합을 대상으로 평가되었으며, 기존의 Nearest Neighbor Model과 K-Means 군집보다 그 성능이 우수함을 보인다.

  • PDF