• Title/Summary/Keyword: 예측성능 개선

Search Result 977, Processing Time 0.032 seconds

Developing an Ensemble Classifier for Bankruptcy Prediction (부도 예측을 위한 앙상블 분류기 개발)

  • Min, Sung-Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.139-148
    • /
    • 2012
  • An ensemble of classifiers is to employ a set of individually trained classifiers and combine their predictions. It has been found that in most cases the ensembles produce more accurate predictions than the base classifiers. Combining outputs from multiple classifiers, known as ensemble learning, is one of the standard and most important techniques for improving classification accuracy in machine learning. An ensemble of classifiers is efficient only if the individual classifiers make decisions as diverse as possible. Bagging is the most popular method of ensemble learning to generate a diverse set of classifiers. Diversity in bagging is obtained by using different training sets. The different training data subsets are randomly drawn with replacement from the entire training dataset. The random subspace method is an ensemble construction technique using different attribute subsets. In the random subspace, the training dataset is also modified as in bagging. However, this modification is performed in the feature space. Bagging and random subspace are quite well known and popular ensemble algorithms. However, few studies have dealt with the integration of bagging and random subspace using SVM Classifiers, though there is a great potential for useful applications in this area. The focus of this paper is to propose methods for improving SVM performance using hybrid ensemble strategy for bankruptcy prediction. This paper applies the proposed ensemble model to the bankruptcy prediction problem using a real data set from Korean companies.

Efficient Search Range Adjustment for Partial Distortion Search (Partial Distortion Search을 위한 효과적인 검색 범위 조정)

  • Lee, Do-Kyung;Jeong, Je-Chang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.314-317
    • /
    • 2011
  • 영상 압축은 멀티미디어 산업의 가장 중요한 기술이며, 이 중에서도 특히, 움직임 예측은 동영상 부호화 과정에서 가장 복잡한 부분 중 하나이다. 자연 영상과 같은 우리 주위에 존재하는 대부분의 영상은 시간적, 공간적 상관도가 높고, 대부분의 압축 기술은 이 높은 상관도를 이용하는데, 그 중 움직임 예측은 시간적으로 높은 상관도를 가지는 영상의 특징을 사용하여 중복을 줄인다. 따라서 많은 연구자들이 영상 화질 손실이 적은 고속 움직임 예측을 위하여 기술을 제안하였고 성능 개선에 성공하였다. 본 논문에서는 기존의 고속 움직임 예측 알고리즘을 개선하여 영상의 품질과 압축 속도의 향상시켰다.

  • PDF

Improved SOH Prediction Model for Lithium-ion Battery Using Charging Characteristics and Attention-Based LSTM (충전 특성과 어텐션 기반 LSTM을 활용한 개선된 리튬이온 배터리 SOH 예측 모델)

  • Hanil Ryoo;Sang Hun Lee;Deok Jai Choi;Hyuk Ro Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.103-112
    • /
    • 2023
  • Recently, the need to prevent battery fires and accidents has emerged, as the use of lithium-ion batteries has increased. In order to prevent accidents, it is necessary to predict the state of health (SOH) and check the replacement timing of the battery with a lot of degradation. This paper proposes a model for predicting the degradation state of a battery by using four battery degradation indicators: maximum voltage arrival time, current change time, maximum temperature arrival time, and incremental capacity (IC) that can be obtained in the battery charging process, and LSTM using an attention mechanism. The performance of the proposed model was measured using the NASA battery data set, and the predictive performance was improved compared to that of the general LSTM model, especially in the SOH 90-70% section, which is close to the battery replacement cycle.

An Efficient Competition-based Skip Motion Vector Coding Scheme Based on the Context-based Adaptive Choice of Motion Vector Predictors (효율적 경쟁 기반 스킵모드 부호화를 위한 적응적 문맥 기반 움직임 예측 후보 선택 기법)

  • Kim, Sung-Jei;Kim, Yong-Goo;Choe, Yoon-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.464-471
    • /
    • 2010
  • The demand for high quality of multimedia applications, which far surpasses the rapid evolution of transmission and storage technologies, makes better compression coding capabilities ever increasingly more important. In order to provide enhanced video coding performance, this paper proposes an efficient competition-based motion vector coding scheme. The proposed algorithm adaptively forms the motion vector predictors based on the contexts of scene characteristics such as camera motion and nearby motion vectors, providing more efficient candidate predictors than the previous competition-based motion vector coding schemes which resort to the fixed candidates optimized by extensive simulations. Up to 200% of compression gain was observed in the experimental results for the proposed scheme applied to the motion vector selection for skip mode processing.

Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy (에너지 인터넷을 위한 GRU기반 전력사용량 예측)

  • Lee, Dong-gu;Sun, Young-Ghyu;Sim, Is-sac;Hwang, Yu-Min;Kim, Sooh-wan;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.120-126
    • /
    • 2019
  • Recently, accurate prediction of power consumption based on machine learning techniques in Internet of Energy (IoE) has been actively studied using the large amount of electricity data acquired from advanced metering infrastructure (AMI). In this paper, we propose a deep learning model based on Gated Recurrent Unit (GRU) as an artificial intelligence (AI) network that can effectively perform pattern recognition of time series data such as the power consumption, and analyze performance of the prediction based on real household power usage data. In the performance analysis, performance comparison between the proposed GRU-based learning model and the conventional learning model of Long Short Term Memory (LSTM) is described. In the simulation results, mean squared error (MSE), mean absolute error (MAE), forecast skill score, normalized root mean square error (RMSE), and normalized mean bias error (NMBE) are used as performance evaluation indexes, and we confirm that the performance of the prediction of the proposed GRU-based learning model is greatly improved.

A Machine Learning-Based Method to Predict Engine Power (머신러닝을 이용한 기관 출력 예측 방법에 관한 연구)

  • KIM, Dong-Hyun;HAN, Seung-Jae;JUNG, Bong-Kyu;Han, Seung-Hun;LEE, Sang-Bong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.851-857
    • /
    • 2019
  • This study is about ship horsepower prediction of machine learning method using the big data of ship. Currently, new ships use the ISO15016 method to predict external environmental resistance through mathematical equations but due to complicated equations and requires many input variables so it is less applicable to be used in ship. In this recent research, we propose a model capable of predicting ship performance with high performance using SVM (Support Vector Machine) algorithm which shows excellent performance in recent prediction and recognition. The proposed predictive model has the advantage of being able to predict better performance than ISO15016 only if secured big data is used. In this study, we compared the ISO15016 technique and the SVM algorithm-based horsepower analysis method using the 178K bulk carrier's voyage data to reduce ship model data preparation, which is a disadvantage of ISO15016, and improve inaccurate horsepower prediction performance.

Model-based Ozone Forecasting System using Fuzzy Clustering and Decision tree (퍼지 클러스터링과 결정 트리를 이용한 모델기반 오존 예보 시스템)

  • 천성표;이미희;이상혁;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.458-461
    • /
    • 2004
  • 오존 반응 메카니즘은 상당히 복잡하고 비선형적이기 때문에 오존 농도를 예측하는 것은 상당한 어려움을 안고 있다 따라서, 신뢰성 높은 오존 예측값을 구하는데 단일 예측모델만으로는 한계가 있으며, 이를 개선하기 위하여 다중 모델을 제안하였다. 입력데이터에 퍼지 클러스터링을 사용하여 고, 중, 저농도별로 그룹핑한 후, 그룹핑된 오존농도에 대해서 의사결정 트리를 사용하여 그룹핑된 오존데이터가 어느 정도 분류능력을 갖는지 파악하여, 오차가 가장 적은 분류특성을 갖는 그룹을 설정하여, 다중모델의 입력 데이터로 사용하여 모델을 형성하였다. 의사결정 트리를 이용하여 모델의 입력 데이터를 설정하는 것은 어떤 오존농도까지의 범위를 클래스로 설정하느냐에 따라서 모델의 성능과 고, 중, 저농도의 오존을 분류하는 성능이 달라지므로 본 논문에서는 퍼지 클러스터링을 이용하여 의사결정 트리의 클래스의 범위를 설정하여 예측 시스템을 구현하였다.

  • PDF

Conversation Context-Aware Backchannel Prediction Model (대화 맥락을 반영한 백채널 예측 모델)

  • Yong-Seok Choi;Yo-Han Park;Wencke Liermann;Kong Joo Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.263-268
    • /
    • 2023
  • 백채널은 화자의 말에 언어 및 비언어적으로 반응하는 것으로 상대의 대화 참여를 유도하는 역할을 한다. 백채널은 보편형 대화 참여와 반응형 대화 참여로 나뉠 수 있다. 보편형 대화 참여는 화자에게 대화를 장려하도록 하는 단순한 반응이다. 반면에 반응형 대화 참여는 화자의 발화 의도를 파악하고 그에 맞게 반응하는 것이다. 이때 발화의 의미를 파악하기 위해서는 표면적인 의미뿐만 아니라 대화의 맥락을 이해해야 한다. 본 논문에서는 대화 맥락을 반영한 백채널 예측 모델을 제안하고 예측 성능을 개선하고자 한다. 대화 맥락을 요약하기 위한 방법으로 전체 요약과 선택 요약을 제안한다. 한국어 상담 데이터를 대상으로 실험한 결과는 현재 발화만 사용했을 때보다 제안한 방식으로 대화 맥락을 반영했을 때 성능이 향상되었다.

  • PDF

LSTM-based Fine Dust Concentration Prediction using Meteorogical factors and Air Pollution factors (기상 인자와 대기오염 인자를 활용한 LSTM 기반의 미세먼지 농도 예측)

  • Yoo, Jihoon;Shin, Dongil;Shin, Dongkyoo
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.508-511
    • /
    • 2020
  • 미세먼지(PM10, PM2.5)는 배출가스 증가와 함께 빠르게 악화되어 왔으며, 다양한 화학성분 뿐만 아니라 금속 성분이 포함되어 있어 인체에 큰 유해성을 발생한다. 이에 정부는 미세먼지 저감 정책 및 법률을 통해 개선하고자 했지만, 2013년부터 그 효력을 잃기 시작하였다. 이에 본 연구에서는 미세먼지 저감 정책 및 법률을 수립하는데 있어 가장 중요한 요소인 미세먼지 농도를 예측하는 연구를 진행한다. 이전 연구들에서 미세먼지 영향 요소들이 시계열 기반의 데이터(기상인자와 대기오염 인자)인 것을 확인하였기에, 시계열 데이터에 좋은 성능을 보이는 LSTM 알고리즘을 사용하여 학습 후, 서울시 '구별' '시간단위' 미세먼지 농도 예측에 대한 예측 오차(RMSE, MAE) 성능을 비교하였다. 실험 결과 PM10의 경우 (7.2, 4.78), PM2.5의 경우 (4.7, 3.2)의 예측 오차를 보였으며, 금천구의 경우 PM10이 (5.3, 3.71), PM2.5에서 (3.5, 2.5)로 가장 좋은 성능을 보였다.

Data Quality Assessment and Improvement for Water Level Prediction of the Han River (한강 수위 예측을 위한 데이터 품질 진단 및 개선)

  • Ji-Hyun Choi;Jin-Yeop Kang;Hyun Ahn
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.133-138
    • /
    • 2023
  • As a side effect of recent rapid climate change and global warming, the frequency and scale of flood disasters are increasing worldwide. In Korea, the water level of the Han River is a major management target for preventing flood disasters in Seoul, the capital of Korea. In this paper, to improve the water level prediction of the Han River based on machine learning, we perform a comprehensive assessment of the quality of related dataset and propose data preprocessing methods to improve it. Specifically, we improve the dataset in terms of completeness, validity, and accuracy through missing value processing and cross-correlation analysis. In addition, we conduct a performance evaluation using random forest and LightGBM to analyze the effect of the proposed data improvement method on the water level prediction performance of the Han River.