• 제목/요약/키워드: 예측방법

검색결과 12,418건 처리시간 0.047초

연관 사용자 군집과 베이지안 분류를 이용한 사용자 선호도 예측 방법 (User Preference Prediction Method Using Associative User Clustering and Bayesian Classification)

  • 정경용;김진현;이정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.109-111
    • /
    • 2001
  • 기존의 협력적 필터링 기술을 이용한 사용자 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법(Nearest-Neighborhood Method)을 사용하고, 피어슨 상관 계수에 의해 사용자의 유사도를 구하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하였다. 본 논문에서는 기존의 사용자 선호도 예측 방법의 문제점을 보완하기 위하여 연관 사용자 군집과 베이지안 분류를 이음한 사용자 선호도 예측 방법을 제안한다. 제안한 방법에서는 협력적 필터링 시스템에서의 희박성(Sparsity)문제를 해결하기 위하여 ARHP 알고리즘을 사용하여 사용자를 장르별로 군집하며 새로운 사용자는 Naive Bayes 분류자에 의해 이들 장르 중 하나로 분류된다. 또한, 분류된 장르 내에 속한 사용자들과 새로운 사용자의 유사도출 구하기 위해 Naive Bayes 학습을 통해 사용자가 평가한 아이템에 추정치를 달리 부여한다. 추정치가 부여된 선호도를 기존의 피어슨 상관 관계에 적용할 경우 결측치(Missing Value)로 인한 예측의 오류를 적게 하여 예측의 정확도를 높일 수 있다. 제안된 방법의 성능을 평가하기 위해서 기존의 협력적 필터링 기술과 비교 평가하였다.

  • PDF

VVC 화면내 예측 및 부호화 주요 기술

  • 한희지;최재륜;권대혁;최해철
    • 방송과미디어
    • /
    • 제24권4호
    • /
    • pp.39-54
    • /
    • 2019
  • VVC(Versatile Video Coding)는 국제 표준화 단체인 JVET(Joint Video Exports Team)에서 표준화가 진행되고 있는 새로운 국제 비디오 부호화 표준이다. 이 표준화에서는 기존 최신 비디오 부호화 표준인 HEVC(High Efficiency Video Coding)/H.265 대비 2배 이상의 부호화 성능을 목표로 다양한 부호화 방법들이 논의되고 있다. 본 고에서는 VVC의 새로운 부호화 모드 중 화면내 예측(intra prediction) 부호화 방법에 대해 소개한다. 화면내 예측은 현재 부호화를 진행하려는 블록의 주변에 이미 재구성된 샘플들을 참조하여 현재 블록을 예측하는 방법이다. 이 화면내 부호화 방법은 화면간 예측(inter prediction) 부호화 방법과 함께 부호화 효율 향상에 기여할 뿐만 아니라, 임의 접근(random access)을 가능하게 하고 부호화된 비트스트림의 에러 내성을 높인다. VVC는 화면내 부호화 예측 모드 종류를 최대 87개까지 확장하고 다양한 화면내 부호화 방법을 채택함으로써 기존 비디오 부호화 표준에 비해 높은 부호화 효율을 갖는다. 본 고에서는 VVC에 채택된 주요 화면내 부호화 방법들을 소개한다.

인공신경망 및 통계적 방법을 이용한 오존 형성의 예측 (Prediction of Ozone Formation Based on Neural Network and Stochastic Method)

  • 오세천;여영구
    • 청정기술
    • /
    • 제7권2호
    • /
    • pp.119-126
    • /
    • 2001
  • 인공신경 회로망과 통계적 방법을 이용하여 오존 형성의 예측에 관한 연구를 수행하였다. 파라미터 평가방법으로는 실시간 파라미터를 평가하기 위하여 ELS 및 RML 방법이 사용되었으며 오존 형성의 모델로는 ARMAX 모델을 사용하였다. 또한 3층 구조를 갖는 인공신경 회로망 방법을 이용하여 오존 형성의 예측 시험을 수행하였으며 본 연구에 사용된 통계적 방법의 성능을 평가하기 위하여 오존 형성의 예측결과를 실제 자료와 비교 분석을 하였다. 실제 자료와의 비교를 통하여 파라미터 평가 방법 및 인공신경 회로망 방법에 근거한 예측방법이 제한된 예측 구간 내에서 만족할 만한 성능을 보임을 확인할 수 있었다.

  • PDF

통계적 모델과 신경회로망 모델의 성능 비교에 관한 연구 (Performance Comparison Between Neural Network Model and Statistical Models)

  • 한승수;김인택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2401-2403
    • /
    • 2000
  • 시스템의 특성을 이해하고 신뢰성 있는 제어를 위해서는 시스템에 대한 정확한 모델을 필요로 한다. 이러한 목적을 위해서 많은 연구자들에 의한 다양한 방법의 모델링 방법이 계속되어 연구되어지고 있다. 현재 많이 사용하는 모델링 방법 중에는 통계적 기법을 이용하는 것, first principle 방법을 이용하는 것, 지능형 기법을 이용하는 방법 등이 있다. 본 연구에서는 통계적 방법인 fractional factorial 방법을 이용한 모델, Taguchi 방법을 이용한 모델, 그리고 지능형 방법인 신경회로망을 이용한 모델의 3가지 모델을 사용해서 각 모델의 학습오차와 예측오차 등의 특성을 비교하였다. 모델에 사용된 데이터는 비선형 시스템인 플라즈마 화학 증착 장비(Plasma-Enhnaced Chemical Vapor Deposition : PECVD)에 의해 증착된 산화막 실험 데이터이다. 각 모델에 대해서 PECVD 데이터를 사용하여 모델을 만들었을 때 각 모델의 학습오차와 학습오차 변위, 그리고 예측오차와 예측오차변위를 조사하였다. 세가지 모델 모두 학습오차가 예측오차보다 작았으며 변위 또한 학습오차변위가 예측오차변위보다 작았다. 본 연구 결과는 일반적으로 신경회로망에 의한 오차가 다른 통계적인 방법에 의한 오차보다 작음을 보여준다.

  • PDF

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • 이지영;김종우
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 International Conference
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

SVC 공간적 향상 계층에서 빠른 인트라 예측 모드 결정 방법 (Fast Mode Decision Algorithm for Intra Prediction in Spatial Enhancement Layer of SVC)

  • 조미숙;강진미;정기동
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (D)
    • /
    • pp.251-254
    • /
    • 2008
  • H.264/AVC의 확장 표준으로 제정된 SVC는 공간적 확장성의 압축 효율을 높이기 위해 기존 H.264/AVC에서 제공하는 인트라 예측과 인터 예측뿐만 아니라 계층 간 예측을 추가로 수행한다. SVC 표준의 인트라 예측 과정은 부호화가 가능한 모든 모드를 부호화한 후에 최적의 RD(Rate Distortion) 값을 갖는 모드를 선택하기 때문에 계층 간 예측이 추가되어 연산량이 더욱 증가되는 문제점이 있다. 본 논문에서는 공간적 향상 계층에서 인트라 예측 시 연산량을 효과적으로 감소시킬 수 있는 빠른 인트라 예측 모드 결정 방법을 제안한다. 매크로블록 내 경계의 평탄 여부를 조사하여 미리 Intra_BL 모드를 결정하는 방법으로 모드 선택에 따른 RD 값 비교 과정을 줄임으로써 SVC 표준의 인트라 예측 방법보다 연산량이 크게 감소되었다.

  • PDF

실시간 관측자료를 이용한 단시간 강수 예측에 관한 연구 (A Study on the Short-term Forecast Method Using Real-time On-site Data)

  • 이종대;윤성심;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.111-114
    • /
    • 2008
  • 최근 기후변화 등의 영향으로 전 세계 많은 지역에서 집중호우로 인한 홍수 피해가 증가하고 있으며, 국내에서도 홍수 피해액이 지속적으로 증가하는 추세이다. 이러한 집중호우로 인한 홍수의 피해를 줄이기 위해서는 보다 정확한 강수 예측이 선행되어야 하며, 국내에서는 레이더와 인공위성 자료를 이용한 강수 예측기법에 대한 많은 연구가 수행되고 있다. 이러한 강수 예측기법은 공간적으로 균일한 자료를 획득할 수 있는 장점이 있으나, 아직까지 정확도측면에서 활용성에 한계가 있어서 지상 관측소 자료를 이용하여 보정과정을 거친 후 예측에 활용하고 있다. 본 연구에서는 조밀한 지상 관측망을 보유한 서울지역의 실시간 관측 자료를 이용하여 단시간 강수예측을 수행할 수 있는 방법론을 제시하였다. 이 방법은 지상관측자료와 이류 모델을 이용하여 강수를 예측하는 기법이다. 이를 위해 본 연구에서는 47개 지점의 서울시 홍수정보시스템의 자료를 이용하여 단시간 강수량 예측의 방법론과 적용 방법을 제시하고자 하였다.

  • PDF

STBL 모형의 모수추정 및 예측방법의 비교

  • 김덕기;이성덕;김성수;이찬희;이건명
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.129-142
    • /
    • 2006
  • 본 논문은 공간시계열자료가 공간의 위치와 시간의 흐름에 따라 동시에 관측되는 분야인 기상, 지질, 천문, 생태, 역학 등에서 아주 넓이 사용되고 있고 그 수요가 점차 증가하는 이 시기에 복잡한 공간시계열 중선형(STBL) 모형에 대한 모수 추정 방법 중 수치 해석적 방법인 Newton-Raphson 방법과 Kalman-Filter 방법을 비교하고, 두 가지 방법에 의한 예측력을 비교하여 보았다.

  • PDF

통합예측을 이용한 삼차원 메쉬의 기하정보 부호화 알고리듬 (Geometry Coding of Three-dimensional Mesh Models Using a Joint Prediction)

  • 안정환;호요성
    • 대한전자공학회논문지SP
    • /
    • 제40권3호
    • /
    • pp.185-193
    • /
    • 2003
  • MPEG-4 삼차원 메쉬 모델 압축(3DMC) 표준에서 사용되는 평행사변형예측 방법은 예측하고자 하는 꼭지점이 인접한 꼭지점들과 같은 평면상에 있다고 가정하여 하나의 삼각형 내에 있는 인접한 세 개의 꼭지점 좌표 값만을 이용하므로 예측 효율이 좋지 않다. 본 논문에서는 삼각형 주변의 꼭지점 좌표값과 인접하는 삼각형 사이의 사잇각을 고려한 통합예측을 이용하여 삼차원 메쉬 모델의 기하정보를 부호화하는 방법을 제안한다. 우선 제안한 꼭지점 계층탐색 방법으로 위상학적으로 거리가 가까운 점들을 탐색하여 정렬된 값들의 기하학적 상관도를 높이고, 정렬된 삼차원 메쉬의 꼭지점 순서에 따라 주변의 꼭지점 값들을 이용하여 현재 꼭지점 값을 예측한다. 본 논문에서 제안한 통합예측 방법은 다양한 VRML 포맷의 테스트 모델에 대해서 기존의 MPEG-4 3DMC의 평행사변형예측 방법보다 우수한 성능을 보인다.

지열 히트펌프 전기부하 예측을 위한 신경망 적용 방법 (Neural Network Application for Geothermal Heat Pump Electrical Load Prediction)

  • 사트리오 아닌디토;강은철;이의준
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.42-49
    • /
    • 2012
  • 신경망방법은 공학, 경영 그리고 정보기술과 같이 다양한 분양에서 널리 사용되어지고 있다. 신경망방법은 기본적으로 예측, 제어, 식별과 같은 기능을 가지고 있는데, 본 논문에서는 신경망방법을 이용하여 C사의 모델 T의 히트펌프 전기부하를 예측하였다. 부하예측은 시스템을 더욱 효율적이고, 적절하게 만들기 위해 필요하다. 본 논문에서 사용된 히트펌프는 지열원 히트 펌프 시스템이다. 이 지열 히트 펌프의 부하는 사전에 미리 예측되어진 외기온도 및 건물 열부하에 따라 측정 학습된 전력 소비량으로 겨울에는 난방, 여름에는 냉방에 대한 전력 부하를 예측할 수 있다. 이 신경망방법은 신경망 학습 순서를 통해 부하 예측을 위해 히트펌프의 성능데이터를 필요로 한다. 이 부하 예측 인공지능망 방법으로 외기 온도별 건물 통합형 지열 히트 펌프 부하가 예측되어질 수 있다.