• Title/Summary/Keyword: 예측도 모델

Search Result 10,537, Processing Time 0.049 seconds

Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities (코스피 방향 예측을 위한 하이브리드 머신러닝 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2021
  • In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.

Development of Rutting Prediction Model of Flexible Pavement using Repetitive Axial Loading Test (반복 축하중 시험을 이용한 연성포장의 소성변형 예측모델 개발)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2017
  • The primary objective of this research is to develop a rutting performance prediction model of flexible pavement. Extensive laboratory testings were conducted to achieve the objective. A new test method employing repetitive axial loading with confinement was also adopted to estimate the rutting performance of asphalt concrete in the research. The rutting prediction model employes a layer-strain theory. The required rutting coefficients for the prediction model were determined through the laboratory rutting characterizations of the asphalt concrete layer materials. Within the limits of this study, a laboratory rutting prediction model of flexible pavement using repetitive axial loading test was presented. It is noted that the developed rutting prediction model simulates propery the behaviors of flexible pavement layer materials.

Development of fecal coliform prediction model using random forest method (랜덤포레스트기법을 이용한 분변성대장균 예측모델 개발)

  • Seo, Il Won;Choi, Soo Yeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.124-124
    • /
    • 2016
  • 하천에서의 분변성대장균은 분변성 오염 정도를 나타내는 지표로서, 이 농도가 높을수록 오염된 하천수와의 접촉을 통한 호흡기, 소화기 및 피부 관련 질병의 발발 확률이 높다고 알려져 있다. 따라서 하천에서의 수영, 수상스키 등과 같은 입수형 친수활동을 할 때, 분변성대장균 농도가 농도 기준 이하인지를 확인하고 이러한 정보를 친수활동에 이용할 필요가 있다. 그러나 분변성대장균의 경우, 현재 자동수질측정망에서 측정되고 있는 다른 수질인자들과는 달리 실시간 측정이 불가능하다고 알려져 있다. 분변성대장균을 측정하는데 있어 최소 18시간 이상이 필요하며, 이러한 분변성대장균 측정 방식은 하천 이용자들이 안전한 친수활동을 영위하는데 있어 적절한 수질 정보를 제공하지 못한다. 그러므로 분변성대장균을 예측하는 모델을 개발하고, 이를 이용하여 실시간 분변성대장균 정보를 생성하여 하천 이용자들에게 제공할 필요가 있다. 본 연구에서는 친수활동이 활발하게 이루어지는 곳 중 하나인 북한강의 대성리 지점에 대해 데이터 기반 모델을 이용하여 분변성대장균을 예측하였다. 데이터 기반 모델은 물리 기반 모델에서 필요한 지형데이터나 비점오염원 등의 초기 오염물의 양에 대한 데이터를 필요로 하지 않고, 대신 독립변수로 사용되는 기상 및 수질데이터를 필요로 한다. 이러한 기상 및 수질데이터는 기존 기상관측소, 수질관측소에서 매일 자동으로 측정되기 때문에 데이터 기반 모델은 물리 기반 모델에 비해 입력데이터를 구성하기가 쉽다는 장점을 지닌다. 이러한 데이터 기반 모델 중 분류 모델은 회귀 모델과 달리 분변성대장균 농도가 일정 수질기준 이상을 넘는지를 바로 예측할 수 있다. 본 연구에서는 분류 모델 중 높은 예측력을 가진다고 알려진 랜덤포레스트(random forest) 기법을 이용하여 분변성대장균 예측 모델을 개발하였다. 분변성대장균 예측 모델은 주어진 기상 및 수질 조건에 대해 분변성대장균이 200 CFU/100ml가 넘는지를 예측하였다. 예측된 분변성대장균이 기준을 넘는 경우를 2등급, 넘지 않는 경우를 1등급으로 명명하였다. 모델을 개발하기 위하여 북한강 대성리 인근 측정소에서 2010년부터 2015년까지 측정된 기상 및 수질데이터를 수집하였다. 수집한 데이터를 훈련 및 검증데이터로 샘플링하였으며, 이 때 샘플링한 데이터가 기존 데이터가 가지고 있던 등급별 비율을 유지하기 위하여 층화샘플링을 하였다. 본 연구에서는 샘플링에 의한 불확실성을 줄이기 위하여 랜덤하게 50번 샘플링된 각각의 훈련데이터에 대해 모델을 개발하였다. 50개의 모델의 검증 결과를 종합한 결과, 전체 예측률은 0.139로 나타났다.

  • PDF

The Development of Model for the Prediction of Water Demand using Kalman Filter Adaptation Model in Large Distribution System (칼만필터의 적응형모델 기법을 이용한 광역상수도 시스템의 수요예측 모델 개발)

  • 한태환;남의석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.38-48
    • /
    • 2001
  • Kalman Filter model of demand for residental water and consumption pattern wore tested for their ability to explain the hourly residental demand for water in metro-politan distribution system. The daily residental demand can be obtained from Kalman Filter model which is optimized by statistical analysis of input variables. The hourly residental demand for water is calculated from the daily residental demand and consumption pattern. The consumption pattern which has 24 time rates is characterized by data granulization in accordance with season kind, weather and holiday. The proposed approach is applied to water distribution system of metropolitan areas in Korea and its effectiveness is checked.

  • PDF

Assessment of Flood Forecasting using Numerical Weather Prediction Data of Meso-Scale Model (메소스케일모델의 수치예보자료를 이용한 홍수예측 평가)

  • Moon, Hye Jin;Yu, Wan Sik;Jung, Kwan Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.134-134
    • /
    • 2017
  • 전 세계적으로 지구온난화로 인한 기후변화에 의해 다우지역의 집중호우 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 홍수 피해가 발생하고 있다. 이러한 피해를 경감하기 위한 홍수 예 경보의 선행시간 확보에는 정확한 강우 및 홍수예측이 필수적이다. 하지만 기존의 홍수예측 시스템은 관측 강우를 수문모형의 입력 자료로 사용하여 홍수 유출량을 계산하게 되는데, 태풍 및 국지성 집중호우 등과 같은 기상조건에서는 관측강우를 이용하여 홍수 예 경보 시스템을 운영할 경우 선행시간 확보의 어려움으로 인해 방재 효율성이 감소하게 된다. 이에 예측유량의 선행시간을 확보하기 위해서 정확한 강우예측이 선행되어야하며, 이를 위해서는 기상과 수자원 분야의 연계를 통한 홍수 예 경보 시스템 구축이 하나의 대안으로 대두되고 있다. 따라서 본 연구에서는 최근 기후 변화로 인한 국내의 홍수기 강우의 시 공간적 집중 현상으로 인한 호우 피해와 관련하여 신속하고 정확도 높은 홍수 예보의 중요성을 인지하고, 이에 대해 단기간 수치기상예보 자료를 활용하여 국내에 그 적용성을 평가하였다. 수치예보자료는 일본 기상청의 수치기상예보 모델인 중규모 모델(Meso-Scale Model, MSM)을 이용하였으며, 수문 모형은 강우-유출-범람모델(Rainfall-Runoff-Inundation, RRI)을 사용하였다. 대전광역시의 도심지를 통과하는 갑천유역을 대상 유역으로 하였으며, 홍수경보가 발생했던 강우 사상에 대해 강우 및 홍수 예측 정확도를 평가하였다.

  • PDF

Hybrid metrics model to predict fault-proneness of large software systems (대형 소프트웨어 시스템의 결함경향성 예측을 위한 혼성 메트릭 모델)

  • Hong, Euy-Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.5
    • /
    • pp.129-137
    • /
    • 2005
  • Criticality prediction models that identify fault-prone spots using system design specifications play an important role in reducing development costs of large systems such as telecommunication systems. Many criticality prediction models using complexity metrics have been suggested. But most of them need training data set for model training. And they are classification models that can only classify design entities into fault-prone group and non fault-prone group. To solve this problem, this paper builds a new prediction model, HMM, using two styled hybrid metrics. HMM has strong point that it does not need training data and it enables comparison between design entities by criticality. HMM is implemented and compared with a well-known prediction model, BackPropagation neural network Model(BPM), considering internal characteristics and accuracy of prediction.

  • PDF

A Comparison Study of Model Parameter Estimation Methods for Prognostics (건전성 예측을 위한 모델변수 추정방법의 비교)

  • An, Dawn;Kim, Nam Ho;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.355-362
    • /
    • 2012
  • Remaining useful life(RUL) prediction of a system is important in the prognostics field since it is directly linked with safety and maintenance scheduling. In the physics-based prognostics, accurately estimated model parameters can predict the remaining useful life exactly. It, however, is not a simple task to estimate the model parameters because most real system have multivariate model parameters, also they are correlated each other. This paper presents representative methods to estimate model parameters in the physics-based prognostics and discusses the difference between three methods; the particle filter method(PF), the overall Bayesian method(OBM), and the sequential Bayesian method(SBM). The three methods are based on the same theoretical background, the Bayesian estimation technique, but the methods are distinguished from each other in the sampling methods or uncertainty analysis process. Therefore, a simple physical model as an easy task and the Paris model for crack growth problem are used to discuss the difference between the three methods, and the performance of each method evaluated by using established prognostics metrics is compared.

Prediction of Short and Long-term PV Power Generation in Specific Regions using Actual Converter Output Data (실제 컨버터 출력 데이터를 이용한 특정 지역 태양광 장단기 발전 예측)

  • Ha, Eun-gyu;Kim, Tae-oh;Kim, Chang-bok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.561-569
    • /
    • 2019
  • Solar photovoltaic can provide electrical energy with only radiation, and its use is expanding rapidly as a new energy source. This study predicts the short and long-term PV power generation using actual converter output data of photovoltaic system. The prediction algorithm uses multiple linear regression, support vector machine (SVM), and deep learning such as deep neural network (DNN) and long short-term memory (LSTM). In addition, three models are used according to the input and output structure of the weather element. Long-term forecasts are made monthly, seasonally and annually, and short-term forecasts are made for 7 days. As a result, the deep learning network is better in prediction accuracy than multiple linear regression and SVM. In addition, LSTM, which is a better model for time series prediction than DNN, is somewhat superior in terms of prediction accuracy. The experiment results according to the input and output structure appear Model 2 has less error than Model 1, and Model 3 has less error than Model 2.

Spatio-temporal deep learning model for urban drainage network: (2) Improving model's robustness (우수관망 시공간 딥러닝 모델: (2) 모델 강건성 향상을 위한 연구)

  • Yubin An;Soon Ho Kwon;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.228-228
    • /
    • 2023
  • 국지적 지역에 내리는 강한 강도의 강우는 많은 인명 및 재산 피해를 발생시킨다. 이러한 피해를 예방하기 위해 도시 침수 예측에 관한 연구가 오랜 기간 수행되어 왔으며, 최근에는 다양한 신경망(neural network) 모델이 활발히 이용되고 있다. 강우 지속 기간이나 강도는 일정하지 않고, 공간적 특징 또한 도시마다 다르므로 안정적인 침수 예측을 위한 신경망 모델은 강건성(robustness)을 지녀야 한다. 강건한 신경망 모델이란 적대적 공격(adversarial attack)을 방어할 수 있는 능력을 갖춘 모델을 일컫는다. 따라서 본 연구에서는, 도시 침수 예측을 위한 시공간 신경망(spatio-temporal neural network) 모델의 강건성 제고를 위한 방법론을 제안한다. 먼저 적대적 공격의 유형과 방어 방법을 분류하고, 시공간 신경망 모델의 학습 데이터 특성 및 모델 구조구성 조건 등을 활용하여 최적의 강건성 제고 방안을 도출하였다. 해당 모델은 집중호우로 인해 나타날 다양한 관망에서의 침수 피해를 각각 예측하고 피해를 예방하기 위해 활용될 수 있다.

  • PDF

Proposal of a Step-by-Step Optimized Campus Power Forecast Model using CNN-LSTM Deep Learning (CNN-LSTM 딥러닝 기반 캠퍼스 전력 예측 모델 최적화 단계 제시)

  • Kim, Yein;Lee, Seeun;Kwon, Youngsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.8-15
    • /
    • 2020
  • A forecasting method using deep learning does not have consistent results due to the differences in the characteristics of the dataset, even though they have the same forecasting models and parameters. For example, the forecasting model X optimized with dataset A would not produce the optimized result with another dataset B. The forecasting model with the characteristics of the dataset needs to be optimized to increase the accuracy of the forecasting model. Therefore, this paper proposes novel optimization steps for outlier removal, dataset classification, and a CNN-LSTM-based hyperparameter tuning process to forecast the daily power usage of a university campus based on the hourly interval. The proposing model produces high forecasting accuracy with a 2% of MAPE with a single power input variable. The proposing model can be used in EMS to suggest improved strategies to users and consequently to improve the power efficiency.