In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.
The primary objective of this research is to develop a rutting performance prediction model of flexible pavement. Extensive laboratory testings were conducted to achieve the objective. A new test method employing repetitive axial loading with confinement was also adopted to estimate the rutting performance of asphalt concrete in the research. The rutting prediction model employes a layer-strain theory. The required rutting coefficients for the prediction model were determined through the laboratory rutting characterizations of the asphalt concrete layer materials. Within the limits of this study, a laboratory rutting prediction model of flexible pavement using repetitive axial loading test was presented. It is noted that the developed rutting prediction model simulates propery the behaviors of flexible pavement layer materials.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.124-124
/
2016
하천에서의 분변성대장균은 분변성 오염 정도를 나타내는 지표로서, 이 농도가 높을수록 오염된 하천수와의 접촉을 통한 호흡기, 소화기 및 피부 관련 질병의 발발 확률이 높다고 알려져 있다. 따라서 하천에서의 수영, 수상스키 등과 같은 입수형 친수활동을 할 때, 분변성대장균 농도가 농도 기준 이하인지를 확인하고 이러한 정보를 친수활동에 이용할 필요가 있다. 그러나 분변성대장균의 경우, 현재 자동수질측정망에서 측정되고 있는 다른 수질인자들과는 달리 실시간 측정이 불가능하다고 알려져 있다. 분변성대장균을 측정하는데 있어 최소 18시간 이상이 필요하며, 이러한 분변성대장균 측정 방식은 하천 이용자들이 안전한 친수활동을 영위하는데 있어 적절한 수질 정보를 제공하지 못한다. 그러므로 분변성대장균을 예측하는 모델을 개발하고, 이를 이용하여 실시간 분변성대장균 정보를 생성하여 하천 이용자들에게 제공할 필요가 있다. 본 연구에서는 친수활동이 활발하게 이루어지는 곳 중 하나인 북한강의 대성리 지점에 대해 데이터 기반 모델을 이용하여 분변성대장균을 예측하였다. 데이터 기반 모델은 물리 기반 모델에서 필요한 지형데이터나 비점오염원 등의 초기 오염물의 양에 대한 데이터를 필요로 하지 않고, 대신 독립변수로 사용되는 기상 및 수질데이터를 필요로 한다. 이러한 기상 및 수질데이터는 기존 기상관측소, 수질관측소에서 매일 자동으로 측정되기 때문에 데이터 기반 모델은 물리 기반 모델에 비해 입력데이터를 구성하기가 쉽다는 장점을 지닌다. 이러한 데이터 기반 모델 중 분류 모델은 회귀 모델과 달리 분변성대장균 농도가 일정 수질기준 이상을 넘는지를 바로 예측할 수 있다. 본 연구에서는 분류 모델 중 높은 예측력을 가진다고 알려진 랜덤포레스트(random forest) 기법을 이용하여 분변성대장균 예측 모델을 개발하였다. 분변성대장균 예측 모델은 주어진 기상 및 수질 조건에 대해 분변성대장균이 200 CFU/100ml가 넘는지를 예측하였다. 예측된 분변성대장균이 기준을 넘는 경우를 2등급, 넘지 않는 경우를 1등급으로 명명하였다. 모델을 개발하기 위하여 북한강 대성리 인근 측정소에서 2010년부터 2015년까지 측정된 기상 및 수질데이터를 수집하였다. 수집한 데이터를 훈련 및 검증데이터로 샘플링하였으며, 이 때 샘플링한 데이터가 기존 데이터가 가지고 있던 등급별 비율을 유지하기 위하여 층화샘플링을 하였다. 본 연구에서는 샘플링에 의한 불확실성을 줄이기 위하여 랜덤하게 50번 샘플링된 각각의 훈련데이터에 대해 모델을 개발하였다. 50개의 모델의 검증 결과를 종합한 결과, 전체 예측률은 0.139로 나타났다.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.15
no.2
/
pp.38-48
/
2001
Kalman Filter model of demand for residental water and consumption pattern wore tested for their ability to explain the hourly residental demand for water in metro-politan distribution system. The daily residental demand can be obtained from Kalman Filter model which is optimized by statistical analysis of input variables. The hourly residental demand for water is calculated from the daily residental demand and consumption pattern. The consumption pattern which has 24 time rates is characterized by data granulization in accordance with season kind, weather and holiday. The proposed approach is applied to water distribution system of metropolitan areas in Korea and its effectiveness is checked.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.134-134
/
2017
전 세계적으로 지구온난화로 인한 기후변화에 의해 다우지역의 집중호우 빈도 및 강도가 증가하여 치수 구조물의 설계 홍수 빈도를 초과하는 홍수 피해가 발생하고 있다. 이러한 피해를 경감하기 위한 홍수 예 경보의 선행시간 확보에는 정확한 강우 및 홍수예측이 필수적이다. 하지만 기존의 홍수예측 시스템은 관측 강우를 수문모형의 입력 자료로 사용하여 홍수 유출량을 계산하게 되는데, 태풍 및 국지성 집중호우 등과 같은 기상조건에서는 관측강우를 이용하여 홍수 예 경보 시스템을 운영할 경우 선행시간 확보의 어려움으로 인해 방재 효율성이 감소하게 된다. 이에 예측유량의 선행시간을 확보하기 위해서 정확한 강우예측이 선행되어야하며, 이를 위해서는 기상과 수자원 분야의 연계를 통한 홍수 예 경보 시스템 구축이 하나의 대안으로 대두되고 있다. 따라서 본 연구에서는 최근 기후 변화로 인한 국내의 홍수기 강우의 시 공간적 집중 현상으로 인한 호우 피해와 관련하여 신속하고 정확도 높은 홍수 예보의 중요성을 인지하고, 이에 대해 단기간 수치기상예보 자료를 활용하여 국내에 그 적용성을 평가하였다. 수치예보자료는 일본 기상청의 수치기상예보 모델인 중규모 모델(Meso-Scale Model, MSM)을 이용하였으며, 수문 모형은 강우-유출-범람모델(Rainfall-Runoff-Inundation, RRI)을 사용하였다. 대전광역시의 도심지를 통과하는 갑천유역을 대상 유역으로 하였으며, 홍수경보가 발생했던 강우 사상에 대해 강우 및 홍수 예측 정확도를 평가하였다.
The Journal of Korean Association of Computer Education
/
v.8
no.5
/
pp.129-137
/
2005
Criticality prediction models that identify fault-prone spots using system design specifications play an important role in reducing development costs of large systems such as telecommunication systems. Many criticality prediction models using complexity metrics have been suggested. But most of them need training data set for model training. And they are classification models that can only classify design entities into fault-prone group and non fault-prone group. To solve this problem, this paper builds a new prediction model, HMM, using two styled hybrid metrics. HMM has strong point that it does not need training data and it enables comparison between design entities by criticality. HMM is implemented and compared with a well-known prediction model, BackPropagation neural network Model(BPM), considering internal characteristics and accuracy of prediction.
Journal of the Computational Structural Engineering Institute of Korea
/
v.25
no.4
/
pp.355-362
/
2012
Remaining useful life(RUL) prediction of a system is important in the prognostics field since it is directly linked with safety and maintenance scheduling. In the physics-based prognostics, accurately estimated model parameters can predict the remaining useful life exactly. It, however, is not a simple task to estimate the model parameters because most real system have multivariate model parameters, also they are correlated each other. This paper presents representative methods to estimate model parameters in the physics-based prognostics and discusses the difference between three methods; the particle filter method(PF), the overall Bayesian method(OBM), and the sequential Bayesian method(SBM). The three methods are based on the same theoretical background, the Bayesian estimation technique, but the methods are distinguished from each other in the sampling methods or uncertainty analysis process. Therefore, a simple physical model as an easy task and the Paris model for crack growth problem are used to discuss the difference between the three methods, and the performance of each method evaluated by using established prognostics metrics is compared.
Solar photovoltaic can provide electrical energy with only radiation, and its use is expanding rapidly as a new energy source. This study predicts the short and long-term PV power generation using actual converter output data of photovoltaic system. The prediction algorithm uses multiple linear regression, support vector machine (SVM), and deep learning such as deep neural network (DNN) and long short-term memory (LSTM). In addition, three models are used according to the input and output structure of the weather element. Long-term forecasts are made monthly, seasonally and annually, and short-term forecasts are made for 7 days. As a result, the deep learning network is better in prediction accuracy than multiple linear regression and SVM. In addition, LSTM, which is a better model for time series prediction than DNN, is somewhat superior in terms of prediction accuracy. The experiment results according to the input and output structure appear Model 2 has less error than Model 1, and Model 3 has less error than Model 2.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.228-228
/
2023
국지적 지역에 내리는 강한 강도의 강우는 많은 인명 및 재산 피해를 발생시킨다. 이러한 피해를 예방하기 위해 도시 침수 예측에 관한 연구가 오랜 기간 수행되어 왔으며, 최근에는 다양한 신경망(neural network) 모델이 활발히 이용되고 있다. 강우 지속 기간이나 강도는 일정하지 않고, 공간적 특징 또한 도시마다 다르므로 안정적인 침수 예측을 위한 신경망 모델은 강건성(robustness)을 지녀야 한다. 강건한 신경망 모델이란 적대적 공격(adversarial attack)을 방어할 수 있는 능력을 갖춘 모델을 일컫는다. 따라서 본 연구에서는, 도시 침수 예측을 위한 시공간 신경망(spatio-temporal neural network) 모델의 강건성 제고를 위한 방법론을 제안한다. 먼저 적대적 공격의 유형과 방어 방법을 분류하고, 시공간 신경망 모델의 학습 데이터 특성 및 모델 구조구성 조건 등을 활용하여 최적의 강건성 제고 방안을 도출하였다. 해당 모델은 집중호우로 인해 나타날 다양한 관망에서의 침수 피해를 각각 예측하고 피해를 예방하기 위해 활용될 수 있다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.10
/
pp.8-15
/
2020
A forecasting method using deep learning does not have consistent results due to the differences in the characteristics of the dataset, even though they have the same forecasting models and parameters. For example, the forecasting model X optimized with dataset A would not produce the optimized result with another dataset B. The forecasting model with the characteristics of the dataset needs to be optimized to increase the accuracy of the forecasting model. Therefore, this paper proposes novel optimization steps for outlier removal, dataset classification, and a CNN-LSTM-based hyperparameter tuning process to forecast the daily power usage of a university campus based on the hourly interval. The proposing model produces high forecasting accuracy with a 2% of MAPE with a single power input variable. The proposing model can be used in EMS to suggest improved strategies to users and consequently to improve the power efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.