Journal of the Korean Society of Manufacturing Process Engineers
/
v.18
no.9
/
pp.52-57
/
2019
The key technology of the fourth industrial revolution is artificial intelligence and machine learning. In this study, FMEA was performed on fuel pumps used as key items in most systems to identify major failure components, and artificial neural networks were built using big data. The main failure mode of the fuel pump identified by the test was coil damage due to overheating. Based on the artificial neural network built, machine learning was conducted to predict the failure and the mean error rate was 4.9% when the number of hidden nodes in the artificial neural network was three and the temperature increased to $140^{\circ}C$ rapidly.
Park, Soo-Hyun;Do, Jae-Seok;Choi, Seong-Dae;Hur, Jang-Wook
Journal of the Korean Society of Manufacturing Process Engineers
/
v.20
no.9
/
pp.28-34
/
2021
The Fourth Industrial Revolution has led to the development of drones for commercial and private applications. Therefore, the malfunction of drones has become a prominent problem. Failure mode and effect analysis was used in this study to analyze the primary cause of drone failure, and blade breakage was observed to have the highest frequency of failure. This was tested using a vibration sensor placed on drones along the breakage length of the blades. The data exhibited a significant increase in vibration within the drone body for blade fracture length. Principal component analysis was used to reduce the data dimension and classify the state with machine learning algorithms such as support vector machine, k-nearest neighbor, Gaussian naive Bayes, and random forest. The performance of machine learning was higher than 0.95 for the four algorithms in terms of accuracy, precision, recall, and f1-score. A follow-up study on failure prediction will be conducted based on the results of fault diagnosis.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.20
no.12
/
pp.85-91
/
2021
In our daily life, artificial intelligence performs simple and complicated tasks like us, including operating mobile phones and working at homes and workplaces. Artificial intelligence is used in industrial technology for diagnosing various types of equipment using the machine learning technology. This study presents a fault mode effect analysis (FMEA) of start motors using machine learning and big data. Through multiple data collection, we observed that the primary failure of the start motor was caused by the melting of the magnetic switch inside the start motor causing it to fail. Long-short-term memory (LSTM) was used to diagnose the condition of the magnetic locations, and synthetic data were generated using the synthetic minority oversampling technique (SMOTE). This technique has the advantage of increasing the data accuracy. LSTM can also predict a start motor failure.
Shin, Ju Seong;Kim, Ju Hyun;Kim, Jong Geol;Jin, Maolin
Journal of Drive and Control
/
v.16
no.3
/
pp.33-41
/
2019
This study presents the development of a lifetime test bench for the strain wave reducer which is a precision gear reducer of the robot to realize fault diagnosis and failure prognostics. To this end, the lifetime test bench was designed to detect the vertical forward/reverse direction rotation load. Through the lifetime test bench, it is possible to apply the same load spectrum from robot working scenarios. We developed a data integration gateway for fault data collection. Through the development of dedicated software for fault diagnosis and failure prognostics, these data from vibration, noise and temperature sensors were collected and analyzed along with the operation of the lifetime evaluation.
Park, Jeong-Hyun;Seok, Jong-Hoon;Cheon, Kang-Min;Hur, Jang-Wook
Journal of the Korean Society of Manufacturing Process Engineers
/
v.19
no.11
/
pp.94-101
/
2020
In the age of industry 4.0, artificial intelligence is being widely used to realize machinery condition monitoring. Due to their excellent performance and the ability to handle large volumes of data, machine learning techniques have been applied to realize the fault diagnosis of different equipment. In this study, we performed the failure mode effect analysis (FMEA) of an aluminum electrolytic capacitor by using deep learning and big data. Several tests were performed to identify the main failure mode of the aluminum electrolytic capacitor, and it was noted that the capacitance reduced significantly over time due to overheating. To reflect the capacitance degradation behavior over time, we employed the Vanilla long short-term memory (LSTM) neural network architecture. The LSTM neural network has been demonstrated to achieve excellent long-term predictions. The prediction results and metrics of the LSTM and Vanilla LSTM models were examined and compared. The Vanilla LSTM outperformed the conventional LSTM in terms of the computational resources and time required to predict the capacitance degradation.
Donguisusaebowon, Kogchigo are wrritten by Dong-Mu. Dokhaengpyun of the Kogchigo has philosophy of Dong-Mu about Gi-In. In order to understand constitutional medicine of Dong-Mu, it is necessary to study about Bi-Bak-Tam-Ra'Ja(four types of man) in Dokhaengpyun. The results are summarized as follows : 1. In Dokhaengpyu, it is defined that In-Eui-Ye-JI - the nature of human - as In-Ja, Eui-Ja, Ye-Ja, Ji-Ja. This attribute is composed of Chung-Sin-Ip-Yong. We can know that this concept, that is Chung-Sin-Yeum-Hae'Ja, is relative to the Bi-Bak-Tam-Ra'Ja. 2. We can think and infer the relation of Sabujisim of Myeng-Ja and Bi-Bak-Tam-Ra'Ja from Bi-Bak-Tam-Ra'Bu that is attribute of In-Eui-Ye-ji'Ja. Bi-Bak-Tam-Ra'Ja can approach the behavior of Chung-Sin-Yeum-Hae'Ja, if they heard the attitude of YouHaHye and BaelYi which they have attribute of In-Eui-Ye-Ji'Ja. 3. They explain Tthat Bi-Bak-Tam-Ra-Jisim is quoted from SaBuJiSim of Dahak. Thinking that Bi-Bak-Tam-Ra-Jisim of Dokaengpyun and SaBujiSim of YuRiak, we know that there is no rule. So, it is difficult that we can infer the Simyok and make some pattern. 4. The relationship of Bi-Bak-Tam-Ra'Ja and In-Eui-Ye-Ji are different from the relationship of Dokhaegpyun, Sadanron, In-Eui-Ye-Ji of YuRiak and Bi-Bak-Tam-Ra'Ja. If we regard the In-Eui-Ye-Ji Sadan as the nature of human, many attritude can be possible and it may be different that apply a Sadan to the proper time and environment. Therefore, we have to be accepted change, as applying method than fixing idea.
Lee, Sang-Kook;Minner, David D.;Christians, Nick E.
Asian Journal of Turfgrass Science
/
v.24
no.2
/
pp.145-148
/
2010
Nitrogen (N) is one of the most important nutrients among 17 essential nutrients for maintaining turfgrass color and quality. The slow release fertilizers were initially developed to provide a more consistent release of nitrogen over a longer period and are often used to decrease leaching potential from sandy soils. The goal of this study is to determine if various slow release N sources affect the rate at which turfgrass establishes. Six nitrogen sources were evaluated; Nitroform (38-0-0), Nutralene (40-0-0), Organiform (30-0-0), Sulfur coated urea (SCU, 37-0-0), urea (46-0- 0), and Milorganite (6-0-0). The root zone media was seeded and sodded with 'Limousine' Kentucky bluegrass (Poa pratensis L.). Sodded pots produced 182 to 518 g more clipping dry weight than seeded pots. Among seeded pots, Milorganite produced greater amount of root dry weight than any other N sources. Because the period of turfgrass growth is different between sodded and seeded plots, there were differences on clipping yield and root growth. Overall, high N rate had turf color greater than acceptable color of 6 among seeded pots throughout the study. However, low N rate didn't produce acceptable turf color throughout the study. Based on the result of this tudy, ilorganite would be ecommended for new establishment of Kentucky bluegrass an urea with less clipping yield which can lead to reduce abor.
Journal of the Korean Society of Marine Environment & Safety
/
v.26
no.6
/
pp.706-714
/
2020
Currently, 90 % of the world's population breathes air with a fine dust content exceeding the World Health Organization's annual average exposure limit (10 ㎍/㎥). Global efforts have been devoted toward reducing secondary pollutants and ultra-fine dust through regulations on nitrogen oxides released over land and sea. Domestic efforts have also aimed at creating clean marine environments by reducing sulfur emissions, which are the primary cause of dust accumulation in ships, through developing and distributing environment-friendly ships. Among the technologies for reducing harmful emissions from diesel engines, electrostatic precipitator offer several advantages such as a low pressure loss, high dust collection efficiency, and NOx removal and maintenance. This study aims to increase the durability of a ship by improving equipment quality through failure mode effects analysis for the preventive maintenance of an electrostatic precipitator that was developed for reducing fine dust particles emitted from the 2,427 kW marine diesel engines in ships with a gross tonnage of 999 tons. With regard to risk priority, failure mode 241 (poor dust capture efficiency) was the highest, with an RPN of 180. It was necessary to determine the high-risk failure mode in the collecting electrode and manage it intensively. This was caused by clearance defects, owing to vibrations and consequent pin loosening. Given that pin loosening is mainly caused by vibrations generated in the hull or equipment, it is necessary to manage the position of pin loosening.
Kim, Young-Sun;Lee, Tae-Soon;Cho, Sung-Hyun;Lee, Geung-Joo
Weed & Turfgrass Science
/
v.7
no.1
/
pp.62-71
/
2018
This study was conducted to evaluate the effect of liquid fertilizer containing humate (LFH) on changes of turfgrass quality and growth by investigating visual quality, chlorophyll content, dry weight of clipping, and nutrient content in leaves tissue. Treatments were designed as follows; control fertilizer (CF), HF-1 ($CF+1.0mL\;m^{-2}\;LFH$), HF-2 ($CF+2.0mL\;m^{-2}\;LFH$), and HF-3 ($CF+4.0mL\;m^{-2}\;LFH$). As compared with CF, soil chemical properties of LFH treatments were not significantly. Visual quality and root dry weight of LFH treatments were higher than that of CF. Chlorophyll content, clipping yield and nitrogen uptake of HF-2 and HF-3 were increased 11.2-11.8%, 15.3-30.0%, 22-42% by application of LFH. The LFH level was positively correlated with visual quality, chlorophyll content, clipping yield or nutrient uptake amount. These results indicated that the application of LFH improved the growth and quality of creeping bentgrass by increasing nutrient uptake and by prompting root growth.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.44
no.1
/
pp.33-39
/
2007
LonWorks over IP (LonWorks/IP) virtual device network (VDN) is an integrated form of LonWorks device network and IP data network. LonWorks/IP VDN can offer ubiquitous access to the information on the factory floor and make it possible for the predictive and preventive maintenance on the factory floor. Timely response is inevitable for predictive and preventive maintenance on the factory floor under the real-time distributed control. The network induced uncertain time delay deteriorates the performance and stability of the real-time distributed control system on LonWorks/IP virtual device network. Therefore, in order to guarantee the stability and to improve the performance of the networked distributed control system the time-varying uncertain time delay needs to be compensated for. In this paper, under the real-time distributed control on LonWorks/IP VDN with uncertain time delay, a control scheme based on disturbance observer and ZPETC(Zero Phase Error Tracking Controller) phase lag compensator is proposed and tested through computer simulation. The result of the proposed control is compared with that of internal model controller (IMC) based on Smith predictor and disturbance observer. It is shown that the proposed control scheme is disturbance and noise tolerant and can significantly improve the stability and the tracking performance of the periodic reference. Therefore, the proposed control scheme is well suited for the distributed servo control for predictive maintenance on LonWorks/IP-based virtual device network with time-varying delay.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.