• Title/Summary/Keyword: 예인시스템

Search Result 92, Processing Time 0.017 seconds

Experimental Study of Metal Surface Wave Communication for Engine room of Vessels (선박 기관실에서의 금속체 표면파 통신 활용 연구)

  • Jin-Woo Kong;Hak-Sun Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.108-109
    • /
    • 2022
  • In this study analyzed experimental data on noise interference caused by engine operating apply surface wave communication in the engine room. For the experiment, 7 areas of the engine room on 256 ton tug boat and measured noise during engine on off using signal analyzer for effect surface wave communication. In order to construct and actual communication network based on the analysis of the noise and confirm the characteristics of surface wave communication in the area made metal bulkheads the actual communication network installed communication equipment between three metal bulkheads and conducted a comparative experiment with wireless communication. The difference was confirmed. As a result, in the case of surface wave communication, there was no significant difference in the transmission and reception rates before and after engine operation in an environment with three bulkheads, but in the case of Wi-Fi using wireless, the performance deteriorated significantly during operation. was confirmed. As a result of analyzing the experimental data, it was confirmed that noise caused by engine operation affects wireless communication but does not affect surface wave communication. Therefore, even in the area with a lot of electromagnetic wave noise in the ship, when the surface wave communication system is configured using the ship's metal structure, it is possible to replace the wireless communication and furthermore, it is possible to apply the surface wave communication in the enclosed space and the engine room in the ship.

  • PDF

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.