• Title/Summary/Keyword: 예비 성형체

Search Result 104, Processing Time 0.026 seconds

Characteristic Analysis of Powder Forging Processes for Engine Pistons by Finite Element Analysis (유한요소 해석을 통한 피스톤 분말단조 공정의 특성 분석)

  • Jo, Jin-Rae;Ju, Yeong-Sin;Kim, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2042-2049
    • /
    • 2000
  • This paper is concerned with the comparison of forging characteristics between forward and backward processes, through the three-dimensional finite element simulation, for the aluminum powder forging of engine pistons. Starting from the theoretical formulation of velocity and temperature fields in the sintered preform during the process, we examine the comparative distributions of relative density, effective stress and temperature as well as the variations of total forging load and total volume reduction. Through the comparative results, we find out that the forward method provides better forging characteristics than the backward method.

A Study on the Material Properties of Both End Sides of Preform and Forging Process in Large Crank Throw (대형 크랭크스로우의 예비성형체 양끝단부 재료특성과 단조공정에 관한 연구)

  • 김영득;김동영;김동권;김재철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1513-1516
    • /
    • 2003
  • A crank throw, which is one of the crankshaft part for a large diesel engine is manufactured by closed die forging or open die forging. For the purpose of improvement of productivity the open die forging is usually adopted these days. However it has disadvantage of low yield ratio compare to closed die forging. To overcome this problem, the material properties for hot top and bottom zones of ingot are investigated to utilize them to the product and a modified forging process to reduce the material loss of ingot body through forging analysis according to forging factors(a , R, Ø$\sub$B/, Ø$\sub$D/) is suggested.

  • PDF

A research on the Automatic 3-D Blocker Design of Closed Die-Hot Forging (열간 형단조 공정의 3차원 중간 금형 자동 설계에 관한 연구)

  • Hwang, C.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.126-129
    • /
    • 1998
  • Proper design of blocker dies is one of the most important aspect of impression and closed-die forging to achieve adequate metal distribution. Determination of the blocker configuration is a very difficult task and is art in itself, requiring skills achieved only by years of extensive experience. To save the cost and time of blocker design, many methods using computer were proposed. In this research, low pass filter method proposed by Oh etc. was applied to blocker die design of spoiler support, part of aircraft and plasticine model experiment of closed die forging of spoiler support was accomplished to verify the validity of the blocker designed.

  • PDF

Fatigue Strength Characteristic of Metal Matrix Composite Material in $9Al_2\;.\;2B_2O_4$/ AC4CH ($9Al_2\;.\;2B_2O_4$/ AC4CH 금속기 복합재료의 피로강도 특성)

  • Park, Won-Jo;Lee, Kwang-Young;Huh, Sun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1583-1589
    • /
    • 2001
  • Metal matrix composites with whisker reinforcements have significant potentials for demanding mechanical applications including defense, aerospace, and automotive industries. Especially metal matrix composites, which are reinforced with aluminum borate whisker, have been used leer the part of piston head in automobile because of good specific strength and wear resistance. In this study, AC4CH-based metal matrix composites with $Al_{18}$B$_{4}$ $O_{33}$ reinforcement have been produced using squeeze casting method, after T6 heat treatment, we evaluated fatigue life property of matrix and MMC composite and investigated fracture mechanism.m.

주조/단조 공정에서 $A\ell$6061의 단조효과에 관한 연구

  • 권오혁;김형진;배원병;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.251-251
    • /
    • 2004
  • 이 연구에서는 주단조 공정을 자동차 부품인 low control arm 제조에 적용하였다. Al6061에 주단조 공정을 적용함므로써 재료비 감소와 기존의 스틸제품보다 경량화 효과를 얻을 수 있다는 것을 증명하기 위함이다. 첫째로 단조 재료인 A16061의 최적 주조조건을 찾기 위하여, 주조 실험은 알루미늄의 주입온도, 금형온도, 주입시간을 조절함으로써 수행되어졌다. 최적주조조건은 주입온도 $700^{\circ}C$, 금형온도 30$0^{\circ}C$, 주입시간 10초로 정하여졌다. 각각의 미세조직을 관찰하고 응력-변형률곡선을 구하기 위하여 열가단조실험은 빌렛온도, 변형률속도와 감소율을 기초로 하여 수행되어졌다.(중략)

  • PDF

Fabrication Process and Mechanical Properties of High Volume Fraction SiC Particle Preform (고부피분율 SiC분말 예비성형체의 제조공정과 기계적특성)

  • 전경윤
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • The fabrication process and mechanical properties of SiC particle prefrrms with high volume fraction ranged 50∼71% were investigated to make metal matrix composites for possible applications as heat sinks in electronic packares. The SiC particle preforms with 50∼71vol% of reinforcement were fabricated by a new modified process named ball milling and pressing method. The SiC particle performs were fabricated by ball milling of SiC particles with single sized of 48${\mu}$m in diameter or two different size of 8${\mu}$m and 48${\mu}$min diameter, with collodal SiO2 as inorgnic binder in distilled water, and the mixed slurries were cold pressed for consolidation into final prefom. The compressive strengths og calcined SiC particle prefoms increased from 20MPa to 155MPa with increasing the content of inorganis binder, temperature and time for calcination. The increase of compressive strength of SiC particle bridge the interfaces of two neighboring SiC particles.

  • PDF

A study on optimal design in axisymmetric forging processes using UBET (UBET를 이용한 축대칭 단조공정에서의 최적설계에 관한 연구)

  • 김영호;배원병;김진훈;김헌영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1117-1125
    • /
    • 1994
  • A UBET program is developed for determining the optimum sizes of preform of a rib-web part in axisymmetric closed-die forging. The program consists of forward and backward tracing processes. In forward process, material flow, degree of die filling, and forging load are predicted. In backward tracing process, the optimum dimensions of initial billet and preform are determined from the final-shape data without flash. The above program is easy to handle input data with and is convenient to visualize the whole process of closed-die forging with. Experiments are carried out with pure plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

Preform Design for Forging of a PIM Connecting Rod (소결분말 콘넥팅로드 단조의 예비성형체 설계)

  • 박종진
    • Journal of Powder Materials
    • /
    • v.2 no.1
    • /
    • pp.19-28
    • /
    • 1995
  • Powder forging is a combined technology of powder metallurgy and precision hot forging. Recently, the technology is developing rapidly because of its economic merits, especially in automotive part manufacturing. In the present study, the finite element technique was developed to predict density variation during P/M forging and the technique was applied to analysis of forging of a P/M connecting rod. Although deformation mode of the connecting rod was quite complex, several sections were selected and analyzed under an assumption of asymmetric or plane strain deformation. It was found that some modifications were necessary on the cross section of the beam portion. Therefore, the cross section was modified repeatedly until a satisfactory result of the analysis was obtained. On the other hand, no modifications were necessary in the ring and the pin portions. It is anticipated that the developed technique can be used to optimize preform design and manufacturing processes in P/M forging, which are highly critical to produce successful products in practice.

  • PDF

The Process Design for Hot Forging of Bearing Hub Considering Flow Line (단류선을 고려한 베어링 허브의 열간 단조 공정설계)

  • Byun H. S.;No G. Y.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.428-431
    • /
    • 2005
  • This paper describes the process design for hot forging of bearing hub. Forging processes of bearing hub are simulated using the rigid-plastic finite element method. In the process called closed die forging without flash, the design of blocker geometry is of critical importance. Forging processes designs are take advantage of computer aided Process planning and experts. But that is difficult to predict metal flow line. So the preform is designed by the expert, and modified through predict metal flow line by CAE. This paper is to approach preform design considered defect such as metal flow and unfitting etc. at the finisher process.

  • PDF

An Experimental Study on the Manufacturing Technology of an Engine Piston (자동차용피스톤의 제조기술에 관한 실험적 연구)

  • 김영호;배원병;김형식;변홍석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.83-92
    • /
    • 1998
  • In this paper, an experimental study has been carried out to develop an aluminum forged piston which has good mechanical properties. Through the experiment, the cavity filling, microstructure and mechanical properties of the final product are investigated with respect to chosen process parameters, which are die shape, heat-treatment condition and preform shape. The mechanical properties of the forged piston are compared with these of the cast piston. As the results, an appropriate die-shape is obtained to produce a perfect piston. The suitable heat-treatment condition and preform-shape are found to good hardness and minute microstructure in the forged piston. And we could obtain the mechanical properties(tensile strength, elongation and hardness) of the forged piston are superior to these of the cast piston.

  • PDF