• 제목/요약/키워드: 예변형률

검색결과 7건 처리시간 0.019초

FEM과 AE를 이용한 지적복합재료의 기계적특성 평가 (Evaluation on Mechanical Properties of a Smart Composite Using the finite Element Method and the Acoustic Emission Technique)

  • 박영철;이진경
    • 비파괴검사학회지
    • /
    • 제24권3호
    • /
    • pp.233-239
    • /
    • 2004
  • 지능재료는 안경테, 치아 교정과 같은 의료용 재료, 각종 센서 및 밸브 등의 광범위한 분야에서 적용되고 있다. 이와 같은 지적재료의 형상기억효과를 이용한 지적복합재료는 항공기의 부품, 산업구조물 및 항공산업에서도 그들 시스템의 모니터링을 위하여 사용되어 질 수 있다. 그러나 지능복합재료의 형상기억효과에 대한 분석과 시뮬레이션은 대단히 어렵다. 본 연구에서는 유한요소법을 이용하여 기지재와 하나의 강화섬유에 대한 2차원의 축 대칭 모델에 대하여 분석하였다. 상온(293K)과 고온(363K)에서 각각 해석되었으며 해석결과와 실험결과와의 강도 값을 비교 검토하였다. 더불어 음향방출 기법을 이용하여 지능복합재료(TiNi/A16061)의 예변형률과 고온에서의 미시적 손상거동을 평가하였다.

TiNi/Al 6061 형상기억 복합재료의 강도해석 모듈 개발 (Development of Strength Analysis Modules for TiNi/Al 6061 Shape Memory Alloy)

  • 이동화;박영철;박동성;이규창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.692-696
    • /
    • 2001
  • Thermo-mechanical behavior and mechanical properties of intelligent polymer matrix composite with SMA fiber are experimentally studied. It is found that increments of compressive thermal strain is observed as the pre-strain and TiNi volume fraction increase. The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. In the paper, alloy is based on the general purpose commercial code ANSYS. And for the purpose of easy and fast user's analysis, it is developed the Graphical User Interface by using Tcl/Tk language.

  • PDF

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite using Acoustic Emission Technique)

  • 이진경;박영철;구후택;박동성;이규창
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.275-282
    • /
    • 2002
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

유한요소법을 이용한 TiNi/A16061 형상기억 복합재료의 강도평가 (The Strength Evaluation of TiNi/A16061 Composite by Using Finite Element Method)

  • 박영철;이규창;박동성;이동화
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.72-78
    • /
    • 2002
  • Thermomechanical behavior and mechanical properties of A16061 matrix composite with shape memory alloy(SMA) fiber are studied by using fnite element analysis(FEA). The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when healed after being prestrained. In this paper, an analytical model is assumed two dimentional axisymetric model of one fiber and around the matrix. To evaluate the strength of composite usig FEM, the concept of smart composite was simulated on computer. The Shape memory effect(SME) simulation is very difficult using FEM because of the nonlinear analysis and the elastic plastic analysis. Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363K). The analysis is compare the finite element analysis result with the test result for the analysis validity.

AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 고온파괴특성평가 (Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite at High Temperature using Acoustic Emission Technique)

  • 이진경;박영철;강동현;박동성;이규창
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.72-77
    • /
    • 2001
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.

  • PDF

TiNi/A16061 형상기억복합재료의 피로균열진전에 대한 냉간압연효과 (Effect of Cold Rolling on Fatigue Crack Propagation of TiNi/A16061 Shape Memory Composite)

  • 이진경;박영철;이규창;이상필;조윤호;이준현
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1315-1320
    • /
    • 2005
  • TiNi alloy fiber was used to recover the original shape of materials using its shape memory effect. The shape memory alloy plays an important role within the metal matrix composite. The shape memory alloy can control the crack propagation in metal matrix composite, and improve the tensile strength of the composite. In this study, TiNi/A16061 shape memory alloy(SMA) composite was fabricated by hot press method, and pressed by a roller for its strength improvement. The four kinds of specimens were fabricated with $0\%,\;3.2\%,\;5.2\%\;and\;7\%$ and volume fraction of TiNi alloy fiber, respectively. A fatigue test has performed to evaluate the crack initiation and propagation for the TiNi/A16061 SMA composite fabricated by かis method. In order to study the shape memory effect of the TiNi alloy fiber, the test has also done under both conditions of the room temperature and high temperature. The relationship between the crack growth rate and the stress intensity factor was clarified for the composite, and the cold rolling effect was also studied.

TiNi/A16061 형상기억복합재료의 미시적 손상거동과 손상위치측정에 관한 연구 (A Study on the Microscopic Damage Behavior and the Damage Position Evaluation of TiNi/Al6061 Share Memory Alloy Composite)

  • 이진경;박영철;구후택;이규창
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1787-1794
    • /
    • 2002
  • TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in the matrix using shape memory effect. In order to generate compressive residual stress in TiNi/Al6061 shape memory alloy(SMA) composite, 1, 3 and 5% pre-strains were applied to the composite in advance. It was also evaluated the effect of compressive residual stress corresponding to the pre-strain variation and the volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain in TiNi/Al6061 SMA composite. The results of the microscopic damage evaluation of TiNi/Al6061 SMA composite under various pre-strain using AE technique can be divided into three stage corresponding to the AE signals. AE counts and events were useful parameters to evaluate the fracture mechanism according to the variation of pre-strain. In addition, two dimensional AE source location technique was applied for monitoring the crack initiation and propagation in composite.