• Title/Summary/Keyword: 영화정보

Search Result 923, Processing Time 0.021 seconds

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.

Documentation of Intangible Cultural Heritage Using Motion Capture Technology Focusing on the documentation of Seungmu, Salpuri and Taepyeongmu (부록 3. 모션캡쳐를 이용한 무형문화재의 기록작성 - 국가지정 중요무형문화재 승무·살풀이·태평무를 중심으로 -)

  • Park, Weonmo;Go, Jungil;Kim, Yongsuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.351-378
    • /
    • 2006
  • With the development of media, the methods for the documentation of intangible cultural heritage have been also developed and diversified. As well as the previous analogue ways of documentation, the have been recently applying new multi-media technologies focusing on digital pictures, sound sources, movies, etc. Among the new technologies, the documentation of intangible cultural heritage using the method of 'Motion Capture' has proved itself prominent especially in the fields that require three-dimensional documentation such as dances and performances. Motion Capture refers to the documentation technology which records the signals of the time varing positions derived from the sensors equipped on the surface of an object. It converts the signals from the sensors into digital data which can be plotted as points on the virtual coordinates of the computer and records the movement of the points during a certain period of time, as the object moves. It produces scientific data for the preservation of intangible cultural heritage, by displaying digital data which represents the virtual motion of a holder of an intangible cultural heritage. National Research Institute of Cultural Properties (NRICP) has been working on for the development of new documentation method for the Important Intangible Cultural Heritage designated by Korean government. This is to be done using 'motion capture' equipments which are also widely used for the computer graphics in movie or game industries. This project is designed to apply the motion capture technology for 3 years- from 2005 to 2007 - for 11 performances from 7 traditional dances of which body gestures have considerable values among the Important Intangible Cultural Heritage performances. This is to be supported by lottery funds. In 2005, the first year of the project, accumulated were data of single dances, such as Seungmu (monk's dance), Salpuri(a solo dance for spiritual cleansing dance), Taepyeongmu (dance of peace), which are relatively easy in terms of performing skills. In 2006, group dances, such as Jinju Geommu (Jinju sword dance), Seungjeonmu (dance for victory), Cheoyongmu (dance of Lord Cheoyong), etc., will be documented. In the last year of the project, 2007, education programme for comparative studies, analysis and transmission of intangible cultural heritage and three-dimensional contents for public service will be devised, based on the accumulated data, as well as the documentation of Hakyeonhwadae Habseolmu (crane dance combined with the lotus blossom dance). By describing the processes and results of motion capture documentation of Salpuri dance (Lee Mae-bang), Taepyeongmu (Kang seon-young) and Seungmu (Lee Mae-bang, Lee Ae-ju and Jung Jae-man) conducted in 2005, this report introduces a new approach for the documentation of intangible cultural heritage. During the first year of the project, two questions have been raised. First, how can we capture motions of a holder (dancer) without cutoffs during quite a long performance? After many times of tests, the motion capture system proved itself stable with continuous results. Second, how can we reproduce the accurate motion without the re-targeting process? The project re-created the most accurate motion of the dancer's gestures, applying the new technology to drew out the shape of the dancers's body digital data before the motion capture process for the first time in Korea. The accurate three-dimensional body models for four holders obtained by the body scanning enhanced the accuracy of the motion capture of the dance.

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.