본 논문에서는 기존의 백내장 추출 방법을 개선하기 위해 FCM(Fuzzy C_Means) 알고리즘을 적용하여 백내장을 추출하고 분석하는 방법을 제안한다. 제안된 방법은 애견 안구 영상에서 ROI 영역을 추출한다. 추출된 ROI 영역에서 Fuzzy Stretching 기법을 적용하여 픽셀의 상한 값과 하한 값을 조정한다. 퍼지 스트레칭 기법이 적용된 ROI 영역에 Max-Min 기반 평균 이진화 기법을 적용하여 ROI 영역을 이진화한다. 그리고 퍼지 스트레칭 기법이 적용된 ROI 영역에 FCM 알고리즘을 적용하여 양자화한 후에 양자화된 ROI 영역에서 밝기 평균 이진화 기법을 적용하여 이진화한다. 따라서 Max-Min 기반 이진화 기법을 적용하여 이진화된 ROI 영역과 밝기 평균 이진화 기법을 적용하여 이진화된 ROI 영역을 AND 연산을 적용하여 백내장의 후보 영역을 추출한다. 추출된 백내장의 후보 영역에서 침식, 팽창 기법을 적용하여 ROI 영역의 픽셀 크기를 확대 또는 축소하고 타원 형태를 가진 객체 중에서 ROI의 전체 영역의 크기가 1/5보다 적은 객체를 잡음으로 간주하여 제거한다. 잡음이 제거된 백내장의 후보 영역에서 크기가 3/5이상인 영역을 백내장 영역으로 추출한다. 제안된 방법의 성능을 분석하기 위하여 기존의 백내장 추출 방법과 제안된 백내장 추출 방법을 15개의 백내장 영상을 대상으로 실험한 결과, 제안된 방법이 기존의 백내장 추출 방법보다 백내장 추출률이 개선된 것을 확인하였다.
본 논문에서는 어깨 초음파 영상을 분석하여 인대 손상(Tear) 영역을 추출하는 방법을 제안한다. 제안된 방법은 초음파 영상에서 ROI(Region of Interest) 영역을 추출하고 추출된 ROI 영역에서 사다리꼴 형태의 소속 함수를 적용한 퍼지 스트레칭 기법을 이용하여 명암 대비를 높인다. 명암 대비가 조정된 ROI 영역에서 밝기 평균 이진화 기법을 적용하여 ROI 영역을 이진화한다. 이진화가 적용된 ROI 영역에서 워터쉐드 기법을 적용하여 연골과 힘줄의 후보 영역들을 추출한다. 추출된 연골과 힘줄의 후보 영역들 중에서 위에서 아래로 스캔하여 수평 너비가 가장 큰 영역에 해당하는 힘줄 영역의 상단 경계선을 추출한다. 그리고 아래에서 위로 스캔하여 수평 너비가 가장 큰 영역의 상단 경계에 스플라인 곡선을 적용하여 연골 영역의 상단 경계선을 추출한다. 힘줄 영역의 상단 경계선과 연골 영역의 상단 경계선 양 끝에 2차 함수 곡선을 적용하여 곡선 사이의 양자화할 영역을 추출한 후, SOM 기법을 적용하여 인대 손상 후보 영역을 양자화한다. 양자화된 인대 손상 후보 영역을 분석하여 어깨 힘줄의 손상 영역과 비손상 영역을 구분하고 인대 손상(Tear) 영역을 추출한다. 제안된 방법을 어깨 힘줄이 있는 초음파 영상을 대상으로 실험한 결과, 인대 손상(Tear) 영역이 비교적 정확히 추출되었다.
최근 의료 장비들이 발전하고 진단 및 연구에 다양하게 이용되면서 이로부터 얻은 3차원 의료 영상들을 자동으로 처리해주는 기술의 수요가 늘고 있다. 자동 뼈 영역화 기법은 이러한 기술들 중 하나로써 골다공증이나 뼈 골절, 골격질환 등의 진단의 효율성을 크게 높여줄 것으로 기대되고 있다. 그러나 현재까지 이를 위한 다양한 연구들이 진행되었음에도 2차원 영상과는 달리 높은 데이터양과 주변 조직과의 모호한 경계들이 많다는 어려움 때문에 실제 진단에는 사용되지 못하고 있다. 이에 따라 본 논문에서는 다중 해상도를 기반으로 하여 영역화와 정합기법을 반복적으로 수행함으로써 3차원 의료 영상 내에서 자동으로 뼈를 영역화 해내는 기법을 제안한다. 낮은 해상도 단계에서 학습된 집합의 뼈 정보들을 이용하여 대략적인 뼈 위치를 검출하고, 이후 해상도를 높여가면서 정합 과정과 영역화 과정을 반복적으로 수행한다. 성능을 확인하기 위해 무릎 자기공명영상(magnetic resonance image)내에서 대퇴골(femur)과 경골(tibia)을 영역화 하는 실험을 진행하였으며 60개의 학습 데이터들을 바탕으로 40개 영상에서의 뼈들을 영역화 하였다.
본 논문에서는 공간 영역에서의 블록 분류 (block classification)와 순방향 신경망 필터(feedforward neural network filter)를 이용한 블록 기반 부호화에서의 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록 경계를 인접 블록간의 통계적 특성을 이용하여 평탄 영역과 에지 영역으로 분류한 후, 각 영역에 대하여 블록화 현상이 발생하였다고 분류된 클래스에 대하여 적응적인 블록간 필터링을 수행한다. 즉, 평탄 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 오류 역전파 학습 알고리듬 (error backpropagation learning algorithm)에 의하여 학습된 2계층 (2-layer) 신경망 필터를 이용하여 블록화 현상을 제거하고, 복잡한 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 에지 성분을 보존하기 위하여 선형 내삽을 이용하여 블록간 인접 화소의 밝기 값만을 조정함으로써 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
본 논문에서는 초음파 영상에서 어깨 부위를 분석하여 어깨 힘줄(Tendon) 영역에서 인대 손상영역을 추출하는 방법을 제안한다. 제안된 방법은 초음파 영상에서 ROI(Region of Interest)을 추출하고 샤프닝 기법을 적용하여 ROI 영역을 뚜렷한 후에 퍼지 스트레칭 기법을 적용하여 명암 대비를 높인 후, 평균 이진화 기법을 적용하여 ROI 영역을 이진화 한다. 이진화된 ROI 영역에 침식, 팽창기법과 라벨링 기법을 적용하여 전체 ROI의 면적 영역에서 0.4%이하인 객체 영역들을 잡음으로 간주하여 제거한 후, ROI 영역에서 수평 너비가 가장 큰 영역의 상단 경계에 스플라인 곡선을 적용한다. 스플라인 곡선이 적용된 영역에서 곡선이 가장 높은 지점을 구한 후, 구한 지점으로부터 ROI 영역의 세로 길이의 1/5를 갖는 상단부분을 제거한 후에 양자화할 영역을 추출하고 FCM을 적용하여 양자화를 한다. 양자화된 영역에서 어깨 힘줄 영역 안에 있는 인대 손상의 후보 영역을 추출하고 면적의 크기가 0.14%이상이거나 3%이하인 영역을 어깨 힘줄의 인대 손상 영역으로 추출한다. 제안된 방법을 어깨 힘줄이 있는 초음파 영상을 대상으로 실험한 결과, 제안된 방법이 어깨 힘줄의 인대 손상 영역이 비교적 정확히 추출되었다.
기계번역에서 좋은 품질의 번역 결과를 얻기 위해서는 대상으로 하고 잇는 전문 영역에 맞게 시스템의 번역 지식을 조정해야 한다. 본 연구에서는 대상 영역 코퍼스를 이용하여 기계번역 시스템의 특정 영역화를 지원하는 워크벤치를 설계하고 구현한다. 워크벤치는 대상 영역의 코퍼스에서 대상 영역의 지식을 추출하는 영역 지식 추출기와, 추출된 지식을 사용자에게 제시하여 사용자가 사전을 편집할 수 있는 환경을 제공하는 영역 지식 검색기와 사전 편집기로 구성된다. 구혀된 워크벤치를 이용하여 일반 영역 사전을 군사 정보 영역으로 특정 영역화를 해 본 결과, 효율성과 정확성에서의 향상이 있었다.
본 논문에서는 복부 초음파 영상에서 복부 근육을 추출하고 추출된 근육 영역에서 지방을 분석하는 방법을 제안한다. 복부 초음파 영상에서 밝은 명암도를 가지는 근막 영역과 어두운 명암도를 가지는 근육 영역의 명암 대비를 강조하기 위해서 앤드 인 탐색 스트레칭 방법과 Multiple 연산을 적용한다. 평균 명암도와 명암 대비가 강조된 복부 초음파 영상에서 수직 방향의 명암도가 200이상인 픽셀들은 퍼지 이진화 기법을 적용하여 이진화한다. 이진화된 영상에서 외복사근 상단선을 추출한 후, 퍼지 이진화 기법이 적용된 영상과 합성한다. 합성된 영상에서 최종 근막 영역을 추출한다. 추출된 각각의 복부 근육 영역에 ART2 알고리즘을 적용하여 복부 근육 영역을 양자화한다. 양자화된 복부 근육 내의 영역을 분석하여 최종 지방 영역을 추출한다. 제안된 복부 근육 추출 및 지방 분석 방법을 실제 복부 초음파 영상을 대상으로 실험한 결과, 추출된 복부 근육 영역에 ART2 알고리즘 기반 양자화 기법을 적용하여 지방을 추출하는 것이 복부비만을 분석하는데 도움이 되는 것을 영상 의학과 전문의를 통해 확인하였다.
연골 영역화는 골관절염의 진단이나 치료를 위해 중요하지만, 모양이 얇고 의료영상 내에서 주변 조직과의 명암 차이가 크지 않기 때문에 현재까지 전문가가 많은 시간과 노력을 들여 수동으로 하고 있다. 이에 따라 본 논문에서는 3차원 자기공명(Magnetic Resonance : MR)영상 내에서 연골을 자동으로 영역화하는 기법을 제안한다. 제안하는 기법은 전문가에 의해 수동으로 영역화된 소수의 의료영상을 학습 데이터베이스로 하여 우선 연골을 지역적인 부분(local patch)들로 분할하여 부분별로 영역화한 후, 부분별 결과들을 취합하고 정제하는 과정으로 이루어진다. 연골 영역화를 위해 먼저 위치와 밝기 값의 외관정보 (appearance)를 이용하여 뼈와 연골의 경계(bone-cartilage interface)를 추출해내고, 이 경계를 기준으로 하여 연골이 포함되는 주변 영역을 일정한 크기의 패치로 분할한다. 다음, 분할된 패치들의 정보를 이용해, 패치마다 형상 사전지식(shape prior)과 외관 사전지식(appearance prior)을 얻어내고 두 사전지식 간의 비율을 적응적으로 결정한다. 이후 패치마다 사전지식 정보를 통해 에너지를 정의하고, 그래프 컷(Graph Cut) 기법을 통해 이 에너지를 최소화하는 최적의 영역화 결과를 도출한다. 마지막으로 지역적으로 얻어진 영역화 결과들을 모양 사전지식으로 하여 전체적인 연골에 대해 전역적 개선 과정을 수행한다. 실험 결과를 통해 제안하는 자동 영역화 기법으로 임상적으로 유용한 영역화 결과를 얻을 수 있음을 제시한다.
본 논문에서는 깊이 영상과 컬러 영상의 매칭을 통한 강인한 전경 객체 영역화 기법을 제안한다. 기존의 컬러 영상 기반 객체 영역화 알고리즘은 배경과 객체의 색상이 유사한 경우 정확한 객체 영역화가 어렵다. 깊이 영상을 이용하면 이러한 오 검출을 줄일 수 있지만, 깊이 영상 취득 장비의 오류로 인하여 검출되는 객체 외곽선이 컬러 영상에 비해 세밀하지 못한 단점이 있다. 따라서, 깊이 영상의 외곽선을 비교적 세밀한 컬러 영상의 외곽선에 매칭시킨다. 아울러, 서로 다른 센서에서 취득한 두 영상을 매칭하기 위하여, 정규화된 상호연관성(normalized cross correlation)을 유사도 척도로 사용한다. 실험을 통하여 제안하는 알고리즘이 전경 객체 영역화의 오 검출을 줄이며, 동시에 객체 외곽선을 충실히 복원함을 확인한다.
자바가상기계의 메모리 할당에서 서로 다른 크기의 메모리 할당과 해제는 힙 영역과 자바 스택 영역에 심각한 외부 단편화를 발생시킨다. 자바가상기계에서 외부 단편화는 가비지 콜렉션의 발생을 증가시키고 메모리를 할당하기 위한 메모리 접근이 증가되는 고비용의 동작이 발생하므로 소규모 메모리에서 동작하는 임베디드 자바가상기계에서 성능저하가 발생하게 된다. 본 논문에서는 임베디드 자바가상기계에서 외부 단편화를 최소화하고 메모리를 효율적으로 관리하기 위한 한 가지 방안으로 고정크기 메모리 할당 방법에 대한 연구이다. 고정크기 메모리 할당 기법은 자바가상기계의 힙 영역에 가장 큰 객체의 크기를 기준으로 할당하고 자바 스택 영역에 가장 큰 스택 프레임을 기준으로 할당하도록 하여, 힙 영역과 자바 스택 영역에 외부 단편화를 최소화하도록 하는 메모리 할당 정책이다. 고정 크기 메모리 할당은 내부 단편화에 따른 메모리 낭비가 발생될 수 있지만, 외부 단편화는 최소화되기 때문에 가비지 콜렉션 발생 횟수를 감소시킬 수 있으며, 회수된 메모리 공간을 재구성하는 고비용을 제거 할 수 있다. 또한 할당 해제된 영역들은 Free-List로 연결되어 메모리 할당을 위한 메모리 접근을 최소화시키는 장점을 가진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.