본 논문에서는 PDA에 장착된 카메라를 사용하여 획득한 명함 영상에 대한 효율적인 영역 해석 알고리듬을 제안한다. 제안된 방법은 크게 영역 분할, 정보 영역 분류, 문자 영역 분류의 3개 과정으로 구성된다. 영역 분할에서는 입력 명함 영상을 8${\times}$8 크기의 블록으로 나누고 각 블록을 저주파 대역에서의 정규화 된 DCT 계수의 에너지를 이용하여 정보 블록과 배경 블록으로 분류한 다음, 블록에 대한 영역 라벨링을 통하여 정보 영역과 배경 영역으로 분할한다. 정보 영역 분류에서는 각 정보 영역을 블록 신호의 수평, 수직 방향 에지 성분과 저주파 대역에서의 DCT 계수의 에너지 비와 이진화 된 정보 영역 내에서의 흑화소인 정보 화소의 밀도를 이용하여 문자 영역과 배경 영역으로 분류한다. 문자 영역 분류에서는 분류된 문자 영역을 정보 화소의 밀도와 평균 런 길이를 이용하여 다시 큰 문자와 작은 문자 영역으로 분류한다. 실험결과 제안된 영역 해석 방법은 여러 종류의 명함을 다양한 주변 여건에서 PDA로 획득한 시험 영상에 대하여 정보 영역과 배경 영역을 잘 분할하고, 정보 영역을 문자 영역과 그림 영역으로 잘 분류하며, 다시 문자 영역을 큰 문자와 작은 문자 영역으로 잘 분류함을 보였다 그리고 제안된 영역 분할 방법과 정보 영역 분류 방법은 기존의 방법들보다 각각 약 2.2-10.1%와 7.7%의 에러율 향상을 보였다.
본 연구에서는 웹 문서를 분류하기 위해서 분류하고자 하는 영역(category)에 대한 개념 지식을 이용한다. 먼저, 영역별 개념 지식을 기구축된 웹 문서의 집합으로부터 제목과 하이퍼링크에 기반한 앵커 텍스트를 이용하여 개념을 보유한 키워드를 추출한다. 추출된 키워드를 형태소 분석을 통해 색인어로 추출한다. 추출된 색인어에 대해 TFIDF를 확장한 영역 적용 색인 가중치 TFIDFc를 적용하여 영역별 개념 기반 색인어와 색인를 구축한다. 색인은 TFIDF를 영역별로 확장하여 구축한다. 구축된 영역별 개념 기반 색인을 이용하여 새로운 웹 문서에 대해서 어떤 영역에 해당하는 가를 결정하는 자동 분류 알고리즘을 수행한다. 자동 분류 알고리즘에 의해 수행된 문서는 영역별로 정리되며, 또한, 분류된 웹 문서의 색인어는 새로운 개념 기반 키워드로 추출되어 개념 기반 영역 지식을 구축한다.
문서영상 구조분석은 문서영상을 세부 영역으로 분할하는 과정과 분할된 영역을 문자, 그림, 표 등으로 분류하는 과정을 포함한다. 이 중 영역분류 과정에서 영역의 크기, 흑화소 밀도, 화소 분포의 복잡도는 영역을 분류하는 기준이 된다. 그러나 그림의 경우 이러한 기준들의 범위가 넓어 경계를 정하기 어려우므로 다른 형태에 비해 상대적으로 오분류의 비율이 높다. 본 논문에서는 그림과 문자를 분류하는 과정에서 영역의 크기, 흑화소 밀도, 화소 분포의 복잡도에 의한 영향을 줄이기 위하여 메디안 필터를 이용하고, 영역확장 필터(region expanding filter)와 제한 조건들을 이용하여 영역분류에서의 오분류를 수정함으로써 상용제품을 포함한 기존 방법에 비해 그림과 문자의 분류가 우수한 문서영상 구조 분석 방법을 제안한다.
본 논문에서는 공간 영역에서의 블록 분류 (block classification)와 순방향 신경망 필터(feedforward neural network filter)를 이용한 블록 기반 부호화에서의 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록 경계를 인접 블록간의 통계적 특성을 이용하여 평탄 영역과 에지 영역으로 분류한 후, 각 영역에 대하여 블록화 현상이 발생하였다고 분류된 클래스에 대하여 적응적인 블록간 필터링을 수행한다. 즉, 평탄 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 오류 역전파 학습 알고리듬 (error backpropagation learning algorithm)에 의하여 학습된 2계층 (2-layer) 신경망 필터를 이용하여 블록화 현상을 제거하고, 복잡한 영역으로 분류된 영역 중 블록화 현상이 발생한 영역은 에지 성분을 보존하기 위하여 선형 내삽을 이용하여 블록간 인접 화소의 밝기 값만을 조정함으로써 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.
본 논문은 계층적 분류기를 제안하여 실시간으로 얼굴 영역을 검출하고, PT(pan-tilt) 카메라를 통해 동적으로 얼굴을 추적할 수 있는 강인한 추적 알고리즘을 구현하고자 한다. 제안된 알고리즘은 분류기 학습, 실시간 얼굴 영역 검출, 추적의 세 단계로 구성된다. 분류기 학습은 AdaBoost 알고리즘을 이용하여, 독특한 얼굴 특징을 추출하는 계층적 분류기를 생성한다. 계층적 분류기는 높은 정확도를 가진 분류기들이 단계적으로 결합됨으로써 우수한 검출 성능으로 수행된다. 실시간 얼굴 영역 검출은 생성된 계층적 분류기를 통해, 빠르고 효율적으로 얼굴 영역을 찾아낸다. 추적은 PT 카메라를 통해 동적으로 검출 영역을 확장시키며, 이전 단계에서 추출된 얼굴 영역의 위치 정보를 이용하여 수행한다. 제안된 알고리즘은 계산의 효율성과 검출 성능을 동시에 증가시키며, 얼굴 검출 수행은 2초당 약 15프레임을 실시간으로 처리한다.
본 논문은 일반적으로 제약 없는 형식 문서 즉, 논-맨하탄(non-manhattan) 형식의 이진문서영상을 분석하는 기법으로서, 연결요소기법에 기반한 특징추출과 이를 이용한 영역분리 및 분류에 관한 새로운 방법을 제안한다. 제안한 방식은 바텀-업(bottom-up)방식으로서 먼저 처리속도의 고속화와 축소시 특징 영역보존을 위해 임계치 축소기법을 사용하고, 축소된 이진 문서영상내의 각 연결된 검은 화소의 집합을 개체화하고 개체의 특성에 따라 텍스트, 신성분, 해프톤, 도형 그리고 표 등으로 분류한다. 영역분류는 두단계로 이루어지는데, 1차분류에서는 우선, B/W 비, 면적, 외각 테두리의 높이와 너비 비, 테두리선유무 등의 특징을 이용하여 해프톤, 수평 수직선, 테두리(표 및 도형)영역을 분리한다. 이후 2차 분류에서는 문자성분의 수평결합을 통한 텍스트행 성분을 추출한다. 마지막 후처리 과정으로 표분석 알고리듬을 통하여 테두리 영역중 표와 도형을 정확히 구분하고, 또한 도형에 관련한 문서성분을 해당 도형 개체에 연결하는 작업을 수행함으로써 완벽한 영역분류를 한다. 다양한 문서영상을 이용한 시뮬레이션을 통해 제안한 알고리듬의 성능을 입증한다.
수목영역에서 획득된 라이다데이터는 수목의 높이 및 수목생체량과 같은 수목관련 정보추출에 이용될 수 있다. 본 연구에서는 다양한 지형지물을 포함하고 있는 라이다데이터로부터 수목영역을 분류하는 방법을 제시한다. 이를 위해 수목에서 나타나는 라이다데이터의 다반사 특성, 높이 편차 및 방향성을 인지적 단서로 이용하였다 각 단서들은 먼저 후보영역을 분류하는데 이용되었으며, 수목이 밀집한 최종 수목영역 분류를 위하여 후보영역에 대한 이진영상을 생성한 후 영상처리를 수행하였다. 기준데이터를 이용하여 실험 결과에 대한 검증을 수행하였으며 세 가지 인지적 단서에 의한 방법 모두 높은 분류 성공률을 보였다.
본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다 영상 분류를 위해 객체의 특징에 기반하여 세 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 마지막 기준은 객체의 핵심 영역 경계에서의 경계 강도이다. 영상을 분류하기 위해서 신경 회로망 학습을 통해서 세 가지 기준들을 통합하도록 한다. 900개의 영상들에 대해 실헝한 결과 84.2%의 분류 정확도를 얻었다.
본 논문에서는 퍼지 기법을 이용하여 구름의 종류를 분석하는 방법을 제안한다. 본 논문에서는 가시 영상과 적외 영상을 대상으로 육지 영역은 RGB 컬러 정보 중에 G 채널 값의 수치가 높고, 바다영역에서는 B 채널 값의 수치가 높다는 정보를 이용한다. 이 정보를 이용하여 육지 영역에서는 R과 B 채널 값을 적용하고, 바다 영역에서는 R과 G 채널 값을 적용한다. 가시 영상과 적외 영상에서 임계치를 적용하여 잡음(구름 이외의 영역)을 제거하고, 잡음을 제거한 영상에서 육지 영역과 바다 영역을 구분한 후, 각 R, G, B 채널 정보를 퍼지 기법에 적용하여 구름 영역을 판별한다. 그리고 가시영상과 적외 영상에 모두 포함된 구름 영역에 대해서는 두 영상을 합성하여 구름을 판별한다. 제안된 기법을 구름 분류에 적용한 결과, 제안된 방법이 기존의 양자화를 적용한 방법보다 구름의 분류 성능이 개선된 것을 확인하였다.
정보 보안의 기수로 떠오른 지문인식 분야는 크게 분류와 인증 단계로 나뉜다. 본 논문은 지문의 분류에 대한 연구결과로, 효율적인 지문 분류를 위해 방향성 이미지로부터 일정 영역내 방향각의 분포도에 대한 분산을 이용한 새로운 지문 분류 알고리즘을 제안한다. 또한 구해진 분산을 토대로 특이점(코아. 델타) 가능 영역을 선정하고 선정된 영역에 대해 의사 특이점을 제거후 지문을 분류하고 마지막으로 실험을 통해 제안된 알고리즘을 검증하고 문제점을 검토해 본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.