• Title/Summary/Keyword: 영역기반 정합 기법

Search Result 149, Processing Time 0.022 seconds

Mdlti-View Video Generation from 2 Dimensional Video (2차원 동영상으로부터 다시점 동영상 생성 기법)

  • Baek, Yun-Ki;Choi, Mi-Nam;Park, Se-Whan;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.53-61
    • /
    • 2008
  • In this paper, we propose an algorithm for generation of multi-view video from conventional 2 dimensional video. Color and motion information of an object are used for segmentation and from the segmented objects, multi-view video is generated. Especially, color information is used to extract the boundary of an object that is barely extracted by using motion information. To classify the homogeneous regions with color, luminance and chrominance components are used. A pixel-based motion estimation with a measurement window is also performed to obtain motion information. Then, we combine the results from motion estimation and color segmentation and consequently we obtain a depth information by assigning motion intensity value to each segmented region. Finally, we generate multi-view video by applying rotation transformation method to 2 dimensional input images and the obtained depth information in each object. The experimental results show that the proposed algorithm outperforms comparing with conventional conversion methods.

Synthesis and Classification of Active Sonar Target Signal Using Highlight Model (하이라이트 모델을 이용한 능동소나 표적신호의 합성 및 인식)

  • Kim, Tae-Hwan;Park, Jeong-Hyun;Nam, Jong-Geun;Lee, Su-Hyung;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.135-140
    • /
    • 2009
  • In this paper, we synthesized active sonar target signals based on highlights model, and then carried out target classification using the synthesized signals. If the target aspect angle is changed, the different signals are synthesized. To know the result, two different experiments are done. First, The classification results with respect to each aspect angle are shown. Second, the results in two group in aspect angle are acquired. Time domain feature extraction is done using matched filter and envelope detection. It shows the pattern of each highlights. Artificial neural networks and multi-class SVM are used for classifying target signals.

Mobile Camera-Based Positioning Method by Applying Landmark Corner Extraction (랜드마크 코너 추출을 적용한 모바일 카메라 기반 위치결정 기법)

  • Yoo Jin Lee;Wansang Yoon;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1309-1320
    • /
    • 2023
  • The technological development and popularization of mobile devices have developed so that users can check their location anywhere and use the Internet. However, in the case of indoors, the Internet can be used smoothly, but the global positioning system (GPS) function is difficult to use. There is an increasing need to provide real-time location information in shaded areas where GPS is not received, such as department stores, museums, conference halls, schools, and tunnels, which are indoor public places. Accordingly, research on the recent indoor positioning technology based on light detection and ranging (LiDAR) equipment is increasing to build a landmark database. Focusing on the accessibility of building a landmark database, this study attempted to develop a technique for estimating the user's location by using a single image taken of a landmark based on a mobile device and the landmark database information constructed in advance. First, a landmark database was constructed. In order to estimate the user's location only with the mobile image photographing the landmark, it is essential to detect the landmark from the mobile image, and to acquire the ground coordinates of the points with fixed characteristics from the detected landmark. In the second step, by applying the bag of words (BoW) image search technology, the landmark photographed by the mobile image among the landmark database was searched up to a similar 4th place. In the third step, one of the four candidate landmarks searched through the scale invariant feature transform (SIFT) feature point extraction technique and Homography random sample consensus(RANSAC) was selected, and at this time, filtering was performed once more based on the number of matching points through threshold setting. In the fourth step, the landmark image was projected onto the mobile image through the Homography matrix between the corresponding landmark and the mobile image to detect the area of the landmark and the corner. Finally, the user's location was estimated through the location estimation technique. As a result of analyzing the performance of the technology, the landmark search performance was measured to be about 86%. As a result of comparing the location estimation result with the user's actual ground coordinate, it was confirmed that it had a horizontal location accuracy of about 0.56 m, and it was confirmed that the user's location could be estimated with a mobile image by constructing a landmark database without separate expensive equipment.

Robust Human Silhouette Extraction Using Graph Cuts (그래프 컷을 이용한 강인한 인체 실루엣 추출)

  • Ahn, Jung-Ho;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • In this paper we propose a new robust method to extract accurate human silhouettes indoors with active stereo camera. A prime application is for gesture recognition of mobile robots. The segmentation of distant moving objects includes many problems such as low resolution, shadows, poor stereo matching information and instabilities of the object and background color distributions. There are many object segmentation methods based on color or stereo information but they alone are prone to failure. Here efficient color, stereo and image segmentation methods are fused to infer object and background areas of high confidence. Then the inferred areas are incorporated in graph cut to make human silhouette extraction robust and accurate. Some experimental results are presented with image sequences taken using pan-tilt stereo camera. Our proposed algorithms are evaluated with respect to ground truth data and proved to outperform some methods based on either color/stereo or color/contrast alone.

Segmentation of Target Objects Based on Feature Clustering in Stereoscopic Images (입체영상에서 특징의 군집화를 통한 대상객체 분할)

  • Jang, Seok-Woo;Choi, Hyun-Jun;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4807-4813
    • /
    • 2012
  • Since the existing methods of segmenting target objects from various images mainly use 2-dimensional features, they have several constraints due to the shortage of 3-dimensional information. In this paper, we therefore propose a new method of accurately segmenting target objects from three dimensional stereoscopic images using 2D and 3D feature clustering. The suggested method first estimates depth features from stereo images by using a stereo matching technique, which represent the distance between a camera and an object from left and right images. It then eliminates background areas and detects foreground areas, namely, target objects by effectively clustering depth and color features. To verify the performance of the proposed method, we have applied our approach to various stereoscopic images and found that it can accurately detect target objects compared to other existing 2-dimensional methods.

A Hierarchical Block Matching Algorithm Based on Camera Panning Compensation (카메라 패닝 보상에 기반한 계층적 블록 정합 알고리즘)

  • Gwak, No-Yun;Hwang, Byeong-Won
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2271-2280
    • /
    • 1999
  • In this paper, a variable motion estimation scheme based on HBMA(Hierarchical Block Matching Algorithm) to improve the performance and to reduce heavy computational and transmission load, is presented. The proposed algorithm is composed of four steps. First, block activity for each block is defined using the edge information of differential image between two sequential images, and then average block activity of the present image is found by taking the mean of block activity. Secondly, camera pan compensation is carried out, according to the average activity of the image, in the hierarchical pyramid structure constructed by wavelet transform. Next, the LUT classifying each block into one among Moving, No Moving, Semi-Moving Block according to the block activity compensated camera pan is obtained. Finally, as varying the block size and adaptively selecting the initial search layer and the search range referring to LUT, the proposed variable HBMA can effectively carries out fast motion estimation in the hierarchical pyramid structure. The cost function needed above-mentioned each step is only the block activity defined by the edge information of the differential image in the sequential images.

  • PDF

An Algorithm with Low Complexity for Fast Motion Estimation in Digital Video Coding (디지털 비디오 부호화에서의 고속 움직임 추정을 위한 저복잡도 알고리즘)

  • Lee, Seung-Chul;Kim, Min-Ki;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1232-1239
    • /
    • 2006
  • In video standards such as MPEG-1/2/4 and H.264/AVC, motion estimation / compensation(ME/MC) process causes the most encoding complexity of video encoder. The full search method, which is used in general video codecs, exhausts much encoding time because it compares current macroblock with those at all positions within search window for searching a matched block. For the alleviation of this problem, the fast search methods such as TSS, NTSS, DS and HEXBS are exploited at first. Thereafter, DS based MVFAST, PMVFAST, MAS and FAME, which utilize temporal or spacial correlation characteristics of motion vectors, are developed. But there remain the problems of image quality degradation and algorithm complexity increase. In this thesis, the proposed algorithm maximizes search speed and minimizes the degradation of image quality by determining initial search point correctly and using simple one-dimension search patterns considering motion characteristics of each frame.

A fingerprint Alignment with a 3D Geometric Hashing Table based on the fuzzy Fingerprint Vault (3차원 기하학적 해싱을 이용한 퍼지볼트에서의 지문 정합)

  • Lee, Sung-Ju;Moon, Dae-Sung;Kim, Hak-Jae;Yi, Ok-Yeon;Chung, Yong-Wha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • Biometrics-based user authentication has several advantages over traditional password-based systems for standalone authentication applications. This is also true for new authentication architectures known as crypto-biometric systems, where cryptography and biometrics are merged to achieve high security and user convenience at the same time. Recently, a cryptographic construct, called fuzzy vault, has been proposed for crypto-biometric systems. This construct aims to secure critical data(e.g., secret key) with the fingerprint data in a way that only the authorized user can access the secret by providing the valid fingerprint, and some implementations results for fingerprint have been reported. However, the previous results had some limitation of the provided security due to the limited numbers of chaff data fer hiding real fingerprint data. In this paper, we propose an approach to provide both the automatic alignment of fingerprint data and higher security by using a 3D geometric hash table. Based on the experimental results, we confirm that the proposed approach of using the 3D geometric hash table with the idea of the fuzzy vault can perform the fingerprint verification securely even with more chaff data included.

Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars (화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법)

  • Kim, Jae-In
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1015-1023
    • /
    • 2022
  • The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

Creation of Three-dimensional Convergence Model for Artifact Based on Optical Surface Scanning and X-ray CT: Sam-Chongtong Hand Canon in Jinju National Museum (광학식 표면스캐닝 및 X-선 CT를 활용한 유물의 3차원 융합모델 제작: 국립진주박물관 소장 삼총통)

  • Jo, Younghoon;Kim, Dasol;Kim, Haesol;Huh, Ilkwon;Song, Mingyu
    • Conservation Science in Museum
    • /
    • v.22
    • /
    • pp.15-26
    • /
    • 2019
  • This study was focused on the three-dimensional convergence modeling that can multilaterally analyze internal and external shapes of the Sam-Chongtong Hand Canon by optical precision scanning optimized for acquiring the surface shape and X-ray CT scanning used for obtaining the internal shape. First, the scanning results were converted by compatible extension, after which three-dimensional deviation analysis was conducted to verify mutual conformities. Accordingly, most (56.98%) deviations between the two scanning models was found be ±0.1mm. This result did not influence registration and merging based on the ICP algorithm. The merged data exhibited the external surface color, detailed shapes, internal width, and structure of the hand canon. The three-dimensional model based on optical surface scanning and X-ray CT scanning can be used for traditional technique interpretation as well as digital documentation of cultural heritage. In the future, it will contribute to deliver accessible scientific information of exhibits for visitors.