• 제목/요약/키워드: 영역기반 이미지검색

검색결과 82건 처리시간 0.028초

다중 관심영역의 내용과 위치를 이용한 이미지 검색 (Image Retrieval using Contents and Location of Multiple Region-of-Interest)

  • 이종원
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제44차 하계학술발표논문집 19권2호
    • /
    • pp.355-358
    • /
    • 2011
  • 본 논문에서는 이미지에서 사용자가 관심을 갖는 영역(ROI)의 내용을 나타내는 특성값과 영역의 위치를 함께 고려하여 이미지를 검색하는 방법을 제안한다. 제안한 방법은 검색 대상 이미지를 일정 크기의 블록으로 구분한 후 사용자가 선택한 다중 ROI와 가장 근접하는 특성을 가진 블록을 선택한다. 블록의 특성값은 MPEG-7의 도미넌트 컬러 기술자를 사용한다. 사용자가 선택한 블록의 특성값과 함께 블록의 위치를 측정한 후, 검색 대상 이미지의 블록들의 특성값 및 위치와 비교하여 유사도를 측정한다. 본 논문에서는 실험결과 제안한 방법이 전역 이미지 검색이나 동일한 위치의 블록만 비교하는 경우보다 다중 ROI의 내용과 위치를 함께 고려하는 방법이 다른 방법에 비해 우수한 성능을 나타냈다.

  • PDF

내용기반 이미지 검색을 위한 영역별 색상차 분석 (Regional Color Feature Analysis for Content-based Image Retrieval)

  • 안재욱;문성빈
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 1999년도 제6회 학술대회 논문집
    • /
    • pp.17-20
    • /
    • 1999
  • 내용기반 이미지 검색에서는 이미지의 하위 영역을 구분하는 방식에 대하여 다양한 접근이 이루어져 왔다. 그중 한 가지가 Stricker와 Dimai가 제안한, 이미지를 다섯개의 영역으로 나누고 그 가운데 주재 객체가 위치할 것을 가정하여 높은 가중치를 부여하는 방법인데, 본 연구에서는 이와 같은 가정이 타당할 것인가를 S.K. Chang의 PIM(Picture Information Measure) 엔트로피를 계산하여 검증하려 하였다. 실험결과 이미지의 중앙과 그 외부 영역 사이에는 유의미한 차이가 존재하는 것으로 나타났으며, 따라서 Stricker와 Dimai의 방식을 지지할 수 있을 것으로 결론 내릴 수 있다.

  • PDF

사분트리 분할 인덱스를 이용한 컬러이미지 검색 (Color Image Retrieval using Quad-tree Segmentation Index)

  • 오석영;홍성용;나연묵
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.175-177
    • /
    • 2004
  • 최근, 이미지 검색기법에서는 객체추출 방법이나 관심영역 추출방법에 관한 연구가 활발히 이루어지고 있다. 그러나, 컬러 이미지의 경우 색상을 고려한 관심영역 특징추출 방법이나 인덱스 기법은 많이 연구되지 못하고 있다. 따라서, 본 논문에서는 컬러 이미지의 색상을 기반으로 하는 사분트리 분할 인덱스 기법을 제안한다. 사분트리 분할 인덱스 구조는 컬러 이미지의 공간 영역을 계층적인 영역으로 분할하여 각 공간 영역의 평균 색상 갓을 데이터베이스에 저장한다 저장되어진 각 영역의 평균 색상은 검색의 효율성을 높이기 위해 사분트리 인스턴스(Quad-tree distance)를 퍼지 값으로 계산하여 인덱스를 생성한다. 생성된 사분트리 분할 인덱스는 컬러 이미지의 관심영역(Region of Interest)의 색상을 검색할 때 유용하게 사용되며. 검색속도의 향상에 도움을 준다.

  • PDF

질감과 칼라 정보를 이용한 지능적 웹 이미지 검색 시스템 설계 (A Design of Intelligent Web Image Retrival System using Texture and Color Information)

  • 홍성용;나연묵
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.61-63
    • /
    • 2001
  • 최근들어, 인터넷상의 E-business나 쇼핑몰사이트와 같은 웹 사이트에서 멀티미디어 정보를 많이 사용하고 있다. 멀티미디어 정보 중에서도 이미지 정보가 가장 많이 사용되고 있으며, 이는 사용자들이 가장 많이 접하는 정보이다. 기존의 이미지 검색 기법은 내용 기반 검색이나 키워드를 이용한 검색 방법을 지원하지만, 사용자의 의도를 적용하지는 못하고 있다. 본 논문에서는 웹에서 사용자가 이미지를 검색하고 접근하는 패턴을 이미지의 칼라와 질감을 특징으로 한 벡터를 기반으로 시스템에 학습 시키고 사용자의 검색 성향을 분석하여 시스템에 적용한다. 이미지 검색의 효율을 높이기 위하여 질감을 기반으로 비트 벡터 인덱스(bit vector index) 기법을 적용하며, 인덱스에 의한 이미지 자동 분류 기법을 제안한다. 또한 이미지 칼라의 정보를 영역별로 추출하여 칼라 부분매칭 검색을 가능하게 한다. 이러한 이미지 검색 시스템을 사용하는 사용자의 정보를 시스템에 학습시키고 학습된 결과를 이용해서 사용자가 검색 하고자 하는 이미지 정보에 편리성을 제공하고 검색의 효율성을 증대시킨다.

  • PDF

색상과 불변 모멘트를 이용한 내용기반 이미지 검색 (Contents-based Image Retrieval using Color and Invariant Moments)

  • 김목련;박영호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.161-164
    • /
    • 2007
  • 최근 인터넷과 멀티미디어 기술이 발달함에 따라 이미지 데이터의 양이 급속히 증가하고 있다. 증가하는 이미지를 효과적으로 관리하고 검색하기 위해 내용기반 이미지 검색에 대한 연구가 활발히 진행되고 있다. 대부분의 내용 기반 이미지 검색 시스템은 색상, 모양, 질감 특징을 이용한 유사도-기반검색에 초점을 맞추고 있다. 따라서 본 논문에서는 이미지에 나타나는 주요 색상과 색상의 공간적 특성을 포함하는 픽셀샘플링, 그리고 이미지의 외형적 변경에 강인함을 갖는 불변 모멘트 값을 이용한 내용기반 이미지 검색 시스템을 제안한다. 첫 번째 유사성 검사 단계에서는 이미지의 영역별로 가중치를 부여하여 추출한 대표색상을 사용하여, 유사하지 않은 이미지를 제거하여 검색대상의 수를 줄이며, 두 번째 유사성 검사 단계에서는 첫 번째 단계에서 선별된 후보 이미지에 색상의 공간적 정보를 포함한 픽셀샘플링을 이용하여 색상의 공간적인 위치까지 유사한 이미지만을 선별한다. 두 번째 유사성 검사단계에서 이미지가 외형적으로 변형된 유사이미지의 검출이 어려운 점을 보완하는 방법으로 이미지의 불변 모멘트를 이용하여 검색의 정확성을 높인다. 제안한 이미지 검색 방법은 10000개의 다양한 이미지로 구성된 데이터베이스에서 검색을 효율성을 실험하였다.

다중 관심영역 기반 이미지 검색 방법 (Multiple Region-of-Interest Based Image Retrieval Method)

  • 이종원;낭종호
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제37권5호
    • /
    • pp.314-318
    • /
    • 2010
  • 본 논문에서는 사용자가 관심을 갖는 다중 영역기반(ROI)으로 이미지를 검색하는 방법을 제안한다. 제안한 방법은 이미지를 블록으로 구분한 후 사용자가 선택한 다중 ROI와 겹치는 부분을 선택하고 해당 블록의 MPEG-7 도미넌트 컬러와 블록의 상대적 위치를 고려하여 유사도를 측정한다. 실험결과 제안한 방법은 전역 이미지 검색이나 동일한 위치의 블록만 비교하는 경우보다 높은 성능향상을 나타냈고, 다중 ROI의 경우 상대적 위치를 고려하는 방법이 다른 방법에 비해 우수한 성능을 나타냈다.

모양 특징정보 기반 이미지 검색을 위한 이진 영상 변환 및 유사도 검색 (Binary Conversion and Similarity Check for Shape feature Information based Image Retrieval)

  • 김주연;김진천
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(상)
    • /
    • pp.375-378
    • /
    • 2003
  • 본 논문에서는 공간적 정보로 이미지검색을 하는 모양 특징정보 기반 이미지 검색 시스템에서 검색효율을 향상 시킬 수 있는 이진 영상 변환 및 유사도 검색에 대한 기법을 제안하였다. 모양특징정보의 좀더 정확한 값의 추출을 위해 이미지의 잡음이 윤곽선으로 인식되는 값이 최소화 될 수 있도록 하는 이진 영상 변환방법을 제안하였으며, 유사도 검색에서는 영역별 특징정보 간의 비교와 병행하여 영역을 다시 소그룹화한 다음 소그룹간의 평균 유사도 값의 비교방법을 적용하였다. 성능 평가를 통하여 제안된 이진 영상 변환 겐 유사도 검색 방법을 사용한 경우 기존의 방법보다 향상된 검색 효율성을 보임을 알 수 있었다.

  • PDF

다중점 적합성 피드백방법을 이용한 영역기반 이미지 유사성 검색 (Region Based Image Similarity Search using Multi-point Relevance Feedback)

  • 김덕환;이주홍;송재원
    • 정보처리학회논문지D
    • /
    • 제13D권7호
    • /
    • pp.857-866
    • /
    • 2006
  • 질의 이미지의 시각적 특징이 사용자의 상위 수준 개념을 잘 표현하지 못하기 때문에 이미지 검색 시스템의 성능은 보통 매우 낮다. 의미적으로 유사한 이미지들이 매우 다른 시각적 특징을 보일 수도 있으며 따라서 여러 개의 군집에 분산될 수 있다. 본 논문에서는 영역기반 이미지 검색과 군집-합병을 이용한 새로운 적합성 피드백 방법을 결합한 내용기반 이미지 검색 방법을 제안한다. 주요 목표는 의미적 차이를 줄이기 위해 의미적으로 관련된 군집들을 찾는 것이다. 제안된 방법은 영역기반 군집 과정과 군집-합병 과정으로 이루어진다. 적합한 이미지들의 모든 분할된 영역들을 의미적으로 관련된 계층적인 군집으로 구성한다. 잠재된 군집의 개수를 결정하고 근접한 군집들을 합병한 후 최종 군집의 대표점들로 다중 질의를 표현한다. 군집-합병 과정에서 군집의 개수를 찾고 고차원에서 특이점 문제를 해결하기 위하여 호텔링의 $T^2$ 대신에 v개의 주성분을 이용하는 $T_v^2$를 적용하였으며 $T^2$의 성능과 $T_v^2$의 성능의 차이가 없음을 보인다. 실험 결과는 제안된 방법이 내용기반 이미지 검색 시스템의 성능을 개선하는 데 효율적임을 보여준다.

칼라 공간과 형태 정보를 이용한 내용기반 이미지 검색 시스템 구현 (Implementation of Content-based Image Retrieval System using Color Spatial and Shape Information)

  • 반종오;강문주;최형진
    • 정보처리학회논문지B
    • /
    • 제10B권6호
    • /
    • pp.681-686
    • /
    • 2003
  • 대량의 일반 이미지 집합에서 사용자가 원하는 이미지를 효율적으로 찾아내는 것이 내용기반 이미지 검색 연구의 주된 목적이나 특정한 분야에 속하지 않은 일반 이미지를 대상으로 하는 연구는 아직까지 만족스럽지 못한 실정이다. 이 논문에서는 이미지의 색상과 형태의 특징 정보들을 추출하여 자동으로 색인하고 검색하는 시스템을 제안하였다. 특징 추출은 인간의 이미지 인식 과정에 기반하여 전체적인 정보와 세부적인 정보로 구분하여 수행하였다. 추출된 특징 정보들은 전역 칼라, 부분 영역 칼라, 전역 형태, 부분 영역 형태 정보로 구분하였다. 실험 결과 제안한 방법은 기존의 방법과 비슷한 시간 내에 비교적 높은 Precision과 Retail로 이미지를 검색함을 알 수 있었다.

JDBC를 이용한 내용 기반 이미지 검색 시스템 (Content-based Image Retrieval System Using JDBC)

  • 이상열;안병규;조세홍;황병곤
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 2000년도 추계공동학술대회논문집
    • /
    • pp.441-446
    • /
    • 2000
  • 본 논문은 웹 상에서 이미지검색 시스템을 구현하는데 검색방법은 영상의 영역과 넓이를 이용한 체인 코드에 기반 하여 복잡도와 영역 색상 정보를 이용하였고, 클라이언트와 서버간의 데이터베이스 연결은 JDBC를 이용하였다. 기존의 검색할 때마다 프로세스가 필요한 CGI를 이용한 방법보다 더 효율적이었다 입력된 영상을 이용하여 검색하는 방법을 사용하였으며, 색상 정보 추출은 RGB신호를 256칼라로 양자화 하였다. 영상의 색상과 객체가 갖는 복잡도를 이용한 내용기반 영상 검색방법을 제시하였다. 본 논문에서는 기존의 방법인 색상특징 과 제안한 체인코드에 의한 객체의 복잡도를 특징으로 하는 공간정보를 결합한 방법을 제안하였다 실험결과 영상의 모양 특징도 고려한 제안한 방법이 내용기반 검색에서 색상 특징만을 고려한 기존의 방법보다 우수하였다.

  • PDF