• Title/Summary/Keyword: 영어처리

Search Result 471, Processing Time 0.032 seconds

Performance Improvement of Extracting Bilingual Term from Phrase Table using Sentence Length Reduction (문장 길이 축소를 이용한 구 번역 테이블에서의 병렬어휘 추출 성능 향상)

  • Jeong, Seon-Yi;Lee, Kong-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.120-125
    • /
    • 2013
  • 본 연구는 대량의 특정 도메인 한영 병렬 말뭉치에서 통계 기반 기계 번역 시스템을 이용하여 병렬어휘를 효과적으로 추출해 낼 수 있는 방법에 관한 것이다. 통계 번역 시스템에서 어족이 다른 한국어와 영어간의 문장은 길이 및 어순의 차이로 인해 용어 번역 시 구절 번역 정확도가 떨어지는 문제점이 발생할 수 있다. 또한 문장 길이가 길어짐에 따라 이러한 문제는 더욱 커질 수 있다. 본 연구는 이러한 조건에서 문장의 길이가 축소된 코퍼스를 통해 한정된 코퍼스 자원 내 구 번역 테이블의 병렬어휘 추출 성능이 향상될 수 있도록 하였다.

  • PDF

Guided Sequence Generation using Trie-based Dictionary for ASR Error Correction (음성 인식 오류 수정을 위한 Trie 기반 사전을 이용한 Guided Sequence Generation)

  • Choi, Junhwi;Ryu, Seonghan;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.211-216
    • /
    • 2016
  • 현재 나오는 많은 음성 인식기가 대체로 높은 정확도를 가지고 있더라도, 음성 인식 오류는 여전히 빈번하게 발생한다. 음성 인식 오류는 관련 어플리케이션에 있어 많은 오동작의 원인이 되므로, 음성 인식 오류는 고쳐져야 한다. 본 논문에서는 Trie 기반 사전을 이용한 Guided Sequence Generation을 제안한다. 제안하는 모델은 목표 단어와 그 단어의 문맥을 Encoding하고, 그로부터 단어를 Character 단위로 Decoding하며 단어를 Generation한다. 올바른 단어를 생성하기 위하여, Generation 시에 Trie 기반 사전을 통해 유도한다. 실험을 위해 모델은 영어 TV 가이드 도메인의 말뭉치의 음성 인식 오류를 단순히 Simulation하여 만들어진 말뭉치로부터 훈련되고, 같은 도메인의 음성 인식 문장과 결과로 이루어진 병렬 말뭉치에서 성능을 평가하였다. Guided Generation은 Unguided Generation에 비해 14.9% 정도의 오류를 줄였다.

  • PDF

Design of a Multilingual Translation System Based on Interlingual Approach (중간언어에 기반한 기계 번역시스템의 설계)

  • Kim, Sang-Kuk;Park, Chang-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.521-526
    • /
    • 1993
  • 다언어간 번역을 지향하는 기계번역시스템의 개발을 위해서는, 의미 이해기반의 해석기술과 언어에 독립적인 생성기술의 설계가 기본이므로 원시언어와 목표언어가 어느 한쪽의 언어지식에 의존하지 않고 언어형식화가 가능한 중간언어 구조를 설정하는 것이 중요하다. 따라서, 한국어를 중심으로 하는 다언어 번역의 설계에서는 비교적 문구조의 정형화가 이루어진 영어와는 달리 어순 배열의 자유도가 높고 조사의 격표시로 문장구조가 결정되는 한국어의 특성을 고려한 해석 및 생성 메카니즘이 필요하다. 본 논문에서는 문장에 내포된 심층의미의 중간 표현으로써, 단어의 의미를 개념화시킨 개념소(Conceptual Primitive)간의 의미적 결합관계를 나타내는 개념 그래프(Conceptual Graph)를 채택하고 설계한 다언어 번역지향의 중간언어기반 번역시스템에 대하여 기술한다.

  • PDF

An Intelligent Character System Using Multi-Language Based Question Answering System (다국어 기반의 질의응답시스템을 활용한 지능형 케릭터 시스템)

  • Park, Hong-Won;Lee, Ki-Ju;Lee, Su-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.215-220
    • /
    • 2002
  • 질의응답시스템을 지능형 케릭터 시스템에 활용하기 위해서는 불특정한 주제에 대해 불특정 다수의 사용자와 대화할 수 있는 정교한 대화 모델이 필요하다. 이러한 대화 모델은 사용자의 질의문장을 인식하고 질의의도를 파악한 후 케릭터의 특정지식으로 접근하여 해당 지식을 사용자의 요구에 맞는 응답문의 형태로 생성해 내는 과정이 필수적으로 포함되어야 한다. 본 논문에서는 논의의 대상이 되는 질의응답시스템이 다국어 기반이라는 점을 고려하여 질의응답시스템을 지능형 케릭터에 활용하는 과정에서 케릭터의 지식구조 설계는 물론이고 질의문장 분석과 응답 문 생성의 방법론에 있어서도 한국어, 영어, 일본어, 중국어 각각의 언어적 특질을 반영함으로써 형태적, 통사적 차이로 인한 애로점을 최소화할 수 있도록 하였다.

  • PDF

An Analysis on Noun Phrases in Situation Semantics (상황의미론에 의한 명사구의 의미분석)

  • Kyong, Chung-Sook
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.261-267
    • /
    • 1993
  • Barwise & Cooper (1991)는 Hans Kamp(1981)의 DRS(Discourse Representation structure)를 기초로 EKN(Extended Kamp Notation)을 개발하였다. 본 논문은 EKN을 통해 실제 자연언어의 의미를 분석하는 데 그 목적이었다. 특히 이 논문은 양화사 의미해석의 기본개념이 되는 자원상황(resource situation), 치역(range), 사건(event) 등의 개념을 구체화하여 영어나 한국어 명사구의 누적성과 의존성에 관련된 의미를 분석한다. '세명의 학생이 (비디오 가게에서) 영화 일곱편을 빌렸다'라는 표현은 '학생'과 '영화'의 배분성 ${\pm}$ 과 집합성 ${\pm}$ 에 의한 일곱가지 해석 이외에 '세명의 학생이 각자 빌린 영화들이 일곱가지'라는 누적적 해석도 가능하다. 이러한 명사구의 누적적 해석에 대하여 분석하고, 'John always wears a tie,. They, were all silk,'에서 'a tie'와 'they'가 공지표화(i) 되기 위한 통사적 요건(성, 수의 일치)을 충족하지 않는 의존적 복수에 대하여도 분석한다.

  • PDF

Automatic WordNet mapping using word sense disambiguation (의미 애매성 해소를 이용한 WordNet 자동 매핑)

  • Lee, Chang-Ki;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.262-268
    • /
    • 2000
  • 본 논문에서는 어휘 의미 애매성 해소와 영어 대역어 사전 그리고 외국언어에 존재하는 개념체계를 이용하여 한국어 개념체계를 자동으로 구축하는 방법을 기술한다. 본 논문에서 사용하는 방법은 기존의 개념체계 구축 방법들에 비해 적은 노력과 시간을 필요로 한다. 또한 상기한 자동 구축 방법에서 사용하는 어휘 의미 애매성 해소를 위한 6가지 feature도 함께 설명한다.

  • PDF

Extraction of English-Korean Compound Noun Translation through Automatic Alignment Method (자동 정렬을 통한 영한 복합어의 역어 추출)

  • Lee, Ju-Ho;Choi, Key-Sun;Lee, Jae-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.309-314
    • /
    • 2000
  • 본 논문에서는 양국어로 된 병렬 코퍼스로부터 복합어의 역어를 추출하기 위한 정렬 방법을 제시한다. 여기에서는 개념어에 대한 양국어 공기정보를 사용하여 기본 정렬을 하고, 인접한 개념어로 정렬의 단위를 확장했다. 또한 재추정 기법을 사용하여 대역 확률을 계산함으로써 보다 높은 정확률을 얻을 수 있었다. 본 논문에서 제안한 방법을 적용하여 139,265개의 영어 어절로 이루어진 우루과이 라운드 영한 병렬 코퍼스에 대해서 실험한 결과 2,290개의 대역어 쌍을 얻었고, 그 정확률은 74%였다.

  • PDF

Solving Japanese Center Exam with Choice Verification (보기 검증을 통한 일본 센터 시험 문제 해결)

  • Kwon, Soonchoul;Nam, Daehwan;Yu, Hwanjo;Lee, Gary Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.190-193
    • /
    • 2015
  • 이 논문에서는 한국의 수능 시험에 대응하는 일본 센터 시험의 세계사B 문제를 해결하는 시스템을 만들고 그 성능을 평가했다. 이 시스템은 문제의 각 보기의 신뢰도를 검증하여 어떤 보기가 참인지를 결정한다. 보기 검증을 위해 지식 베이스 기반, 정보 검색 기반, 시간적 제약 기반 검증을 사용하였다. 성능 평과 결과 6개년도 시험 중 5개 시험에서 통계적으로 의미 있는 결과를 얻었다. 이 시스템은 영어를 대상으로 하나, 한국어에도 존재하는 리소스를 사용했기 때문에 한국어에서도 같은 방법론을 적용할 수 있을 것으로 본다. 후속 연구로는 보기의 의미적 분석과 개체명 이외의 정보에 대한 검색이 필요하다.

  • PDF

Zero Pronoun Resolution for Korean-English Spoken Language MT (한국어-영어 대화체 번역시스템을 위한 영형 대명사 해소)

  • Park, Arum;Ji, Eun-Byul;Hong, Munpyo
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.98-101
    • /
    • 2011
  • 이 논문은 한-영 대화체 번역 시스템에서 영형 대명사 해소를 위한 새로운 방법론을 제시하였다. 영형 대명사는 문맥, 상황, 세상 지식으로부터 추론될 수 있는 문장에서 생략된 요소이다. 이 논문은 특히 주어-대명사 생략 현상에 대해 다루고 있는데, 그 이유는 드라마 대본이나 인스턴트 메신저 채팅과 같은 한국어 대화체에서는 매우 일반적인 현상이기 때문이다. 이 논문에서 우리는 많은 양의 지식을 요구하지 않는 간단한 방법론을 제시하였다. 평가결과 우리의 방법은 0.79의 F-measure 스코어를 달성하였고, 전체번역률의 측면에서는 약 4.1% 정도의 향상효과가 있었다.

  • PDF

A Sentiment Analysis Tool for Korean Twitter (한국어 트위터의 감정 분석 도구)

  • Seo, Hyung-Won;Jeon, Kil-Ho;Choi, Myung-Gil;Nam, Yoo-Rim;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.94-97
    • /
    • 2011
  • 본 논문은 자동으로 한글 트위터 메시지(트윗: tweet)에 포함된 감정을 분석하는 방법에 대하여 기술한다. 제안된 시스템에 의하여 수집된 트윗들은 어떤 질의에 대해 긍정 혹은 부정으로 분류된다. 이것은 일반적으로 어떤 상품을 구매하기 원하는 고객이나, 상품에 대한 고객들의 평가를 수집하기 원하는 기업에게 유용하다. 영문 트윗에 대한 연구는 이미 활발하게 진행되고 있지만 한글 트윗, 특히 감정 분류에 대한 연구는 아직 공개된 것이 없다. 수집된 트윗들은 기계 학습(Naive Bayes, Maximum Entropy, 그리고 SVM)을 이용하여 분류하였고 한글 특성에 따라 자질 선택의 기본 단위를 2음절과 3음절로 나누어 실험하였다. 기존의 영어에 대한 연구는 80% 이상의 정확도를 가지는 반면에, 본 실험에서는 60% 정도의 정확도를 얻을 수 있었다.

  • PDF