• Title/Summary/Keyword: 영양막세포

Search Result 104, Processing Time 0.033 seconds

Dystrophin Degradation in Skeletal Muscles with Lipid Enrichment in Cattle (지방 침착률이 높은 식용소에서 나타난 골격근의 디스트로핀 소실)

  • Jeon, Sung-Hwan;Kim, Ah-Young;Lee, Eun-Mi;Lee, Eun-Joo;Hong, Il-Hwa;Hwang, Ok-Kyung;Jeong, Kyu-Shik
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.592-602
    • /
    • 2016
  • This study investigated the muscular dystrophin levels in freely moving Australian cattle mainly fed grass, freely moving Korean cattle fed mainly a grain diet, and Korean cattle fed a grain diet but housed in a relatively limited space of a cow house. The total skeletal muscle specimens of 244 cattle were collected and immediately fixed in 10% neutral formalin. The same area was biopsied from the cattle in both countries. The findings showed that fatty infiltration is highly correlated with membrane-associated protein degradation in skeletal muscle, and that among several membrane-associated proteins, dystrophin showed the most significant reduction in expression in the cattle with fatty infiltration. Similarly, CD36 was more highly expressed in the cattle with fatty infiltration of skeletal muscle. Various breeding factors, such as oxidative stress; the presence of oxidized lipids in the diet; and environmental factors such as exercise, temperature and amount of time spent, may have critical effects on the degradation of normal cytoskeleton proteins, which are required for maintaining normal skeletal muscle architecture. Among the sarcolemma membrane-associated proteins, dystrophin is the most sensitive membrane protein that is involved muscular dystrophy and muscular degeneration. Thus, the present findings may be useful for studies on muscular dystrophy in humans or the pathogenesis of muscular diseases in animal models.

Genetics of Pre-eclampsia

  • Kim, Shin-Young;Ryu, Hyun-Mee
    • Journal of Genetic Medicine
    • /
    • v.8 no.1
    • /
    • pp.17-27
    • /
    • 2011
  • Pre-eclampsia is a major cause of maternal and perinatal mortality and morbidity worldwide, but remains unclear about the underlying disease mechanisms. Pre-eclampsia is currently believed to be a two-stage disease. The first stage involves shallow cytotrophoblast invasion of maternal spiral arteriole, resulting in placental insufficiency. The hypoxic placenta release soluble factors, cytokines, and trophoblastic debris into maternal circulation, which induce systemic endothelial damage and dysfunction. This cause the second stage of the disease: maternal syndrome. Epidemiological research has consistently demonstrated a familial predisposition to pre-eclampsia. Intensive research efforts have been made to discover susceptibility genes that will inform our understanding of the pathophysiology of preeclampsia and that may provide direction for therapeutic or preventative strategies. In this review, we summarize the current understanding of the role of genetic factors in the pathophysiology of pre-eclampsia and explain the molecular approach to search for genetic clues in pre-eclampsia.

Change of Antioxidant Activities in Carrots (Daucus carota var. sativa) with Enzyme Treatment (효소처리 가공이 당근(Daucus carota var. sativa)의 항산화 활성 변화에 미치는 영향)

  • Yoo, Jin-Kyoun;Lee, Jin-Hee;Cho, Hyung-Yong;Kim, Jung-Gook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.262-267
    • /
    • 2013
  • The purpose of this research is to minimize the loss of nutrients in carrots (Daucus carota var. sativa). A protopectinase was used to enzymatically macerated and separate cells without damage. The enzyme modification group's collection rate was 81% (residue rate 19%), while the grinding process group's collection rate was 56% (residue rate 44%)-an over 20% of collection rate difference. Thus we predicted a big difference in transference number after the process and wastage. In comparing ingredient changes in the enzyme modification group versus the grinding process group, the content of ${\beta}$-carotene (the carrot's main ingredient) showed a change in protection factor (PF) ($2.2{\pm}0.2$ PF, $1.4{\pm}0.4$ PF, respectively), total polyphenol content ($89{\pm}3.42{\mu}g/g$, $64{\pm}4.16{\mu}g/g$, respectively), and total flavonoid content ($68{\pm}2.73{\mu}g/g$, $41{\pm}3.26{\mu}g/g$, respectively). Thus we confirmed that nutrient destruction, due to cell membrane preservation, occurred less often in the enzyme modification process than the mechanical grinding process group. We also measured DPPH radical scavenging activity, hydroxyl radical scavenging activity, and nitrite scavenging activity. DPPH radical scavenging activity was $87{\pm}0.29%$ and $74{\pm}1.56%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Hydroxyl radical scavenging activity was $44{\pm}0.49%$ and $32{\pm}0.48%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Nitrite scavenging activity was $59{\pm}0.53%$ and $46{\pm}0.62%$ in the enzymatic modification group compared to the mechanical grinding process group, respectively. Our results show that cell membrane preservation, via the protopectinase enzyme process, decreases the loss of nutrients and still preserves inherent antioxidants.

Research Method of Fatty Acids Transfer between Phospholipid Model Membranes (인지질 모델막에서의 지방산 이동에 관한 연구 방법)

  • 임병순;김혜경;김을상
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.743-750
    • /
    • 1997
  • Direct measurement of the kinetics of free fatty acid transfer between phospholipid model membrane is technically limited by the rapid nature of the transfer process. Separation of membrane-bound fatty acid by centrifugation has shown that although the equilibrium distribution of free fatty acid is determined by this method, fatty acid transfer occurs too rapidly for accurate kinetic measurements. Recently fluorescence resonance energy transfer(FRET) assay has been developed to examine transfer of fatty acids between membranes. Donor membranes which has fluorescent fatty acid, anthroyloxy fatty acid(AOFA), is mixed with acceptor membranes which has non-interchangeable fluorescent quencher, nitrobenzo-xadiazol(NBD), using stopped flow apparatus. As the fluorescent fatty acids transfer from donor membrane to acceptor membrane, fluorescence intensity would be decreased and the rate and degree of fatty acid transfer can be analyzed. Fatty acid transfer between micelles is more complicated because of bile salt. Therefore in experiments with micelles, fluorescence self quenching assay is used. At high concentrations, a fluorophore tends to quench its own fluorescence causing a reduction in fluorescence intensity. Donor micelles contained self quenching concentrations of fluorophore and acceptor micelles had no fluorophore. Upon mixing of donor and acceptor micelles, the rate of transfer of the fluorophore from the donor to the acceptor was measured by monitoring the release in self quenching when its concentration in donor decreased over time.

  • PDF

In Vitro and In Vivo Anti-Oxidative and Anti-Inflammatory Activities of Acer tegmentosum Maxim Extracts (RAW 264.7 대식세포와 염증유도 동물모델에서 산겨릅나무 추출물의 항산화 및 항염증 효과)

  • Lee, Cho-Eun;Jeong, Hyeon-Hee;Cho, Jin-Ah;Ly, Sun Yung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Acer tegmentosum Maxim (ATM) is known as traditional medicine for treatment of hepatic disorders such as hepatitis, related-inflammatory disease, and hepatic cancer. In this study, we evaluated the antioxidant and anti-inflammatory effects of ATM extracted with $80^{\circ}C$ water or 95% ethanol. Antioxidant activities of ATM extracts were measured based on DPPH and ABTS radical scavenging activities, total polyphenolic compound contents, and ferric reducing antioxidant power. The anti-inflammatory effects of ATM extract were assayed on release of nitric oxide, tumor necrosis factor $(TNF)-{\alpha}$, and interferon $(IFN)-{\gamma}$ from lipopolysaccharide (LPS)-induced macrophages. In these experiments, 95% ethanol extract of ATM showed stronger antioxidant and anti-inflammatory effects than water extract. Therefore, we determined the effects of ATM ethanol extract on an animal model of sepsis. Seven days oral gavage of ATM ethanol extract followed by LPS stimulation reduced the protein levels of $TNF-{\alpha}$ and $IFN-{\gamma}$ in serum as well as mRNA levels of $TNF-{\alpha}$ and interleukin-6 in intestinal epithelial cells. In addition, ATM ethanol extract reduced DNA damage in mouse lymphocytes. These results indicate that ATM extract has strong antioxidant and anti-inflammatory in vitro and in vivo effects and may be developed as a potential food material for prevention of inflammatory diseases.

Nutritional composition, antioxidant capacity, and brain neuronal cell protective effect of cultivars of dried persimmon (Diospyros kaki) (품종별 곶감(Diospyros kaki)의 영양성분 분석, 산화방지 효과 및 뇌 신경세포 보호효과)

  • Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Park, Sang Hyun;Park, Su Bin;Yoo, Seul Ki;Han, Hye Ju;Lee, Su-Gwang;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.225-237
    • /
    • 2018
  • This study was conducted to compare nutritional analysis and neuroprotective effect of 5 cultivars of Diospyros kaki (Dungsi, Godongsi, Gojongsi, Gabjubaekmok, and Bansi). In nutritional analysis, three free sugars: sucrose, glucose, and fructose, and six fatty acids: tartaric acid, hexadecanoic acid, palmitic acid, oleic acid, octadecenamide, and octadecane, were detected. Potassium and phosphorus levels were the highest in inorganic component analysis, and glutamic acid and aspartic acid were the highest contents in amino acid analysis. Vitamin C was detected in all cultivars. Total phenolic content was the highest in Dungsi. Antioxidant activities such as ABTS (3-ethylbenzothiazoline-6-sulfonic acid), DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activities, FRAP (ferric reducing/antioxidant power), and MDA (malondialdehyde) inhibitory effect were the highest in Gabjubaekmok. Acetylcholinesterase inhibitory activity, cell viability, intracellular reactive oxygen species (ROS) accumulation, and lactate dehydrogenase (LDH) release were measured to confirm the neuroprotective effect in MC-IXC cells. Gabjubaekmok showed significant acetylcholinesterase (AChE) inhibition and neuroprotection.

Germ Cell Differentiations during Oogenesis and Reproductive Cycle in Female Jicon Scallop, Chlamys farreri on the West Coast of Korea (한국 서해산 암컷 비단가리비, Chlamys farreri의 난형성과정 중 생식세포 분화 및 생식주기)

  • Park, Ki-Yeol;Lee, Ki-Young
    • Development and Reproduction
    • /
    • v.12 no.2
    • /
    • pp.195-202
    • /
    • 2008
  • The gonadosomatic index, germ cell differentiation, and the ovarian cycle in female jicon scallop, Chlamys farreri were studied by histologic and cytologic observations. In the early vitellogenic oocyte, the Golgi complex, mitochondria and rough endoplasmic reticulum were involved in the formation of lipid droplets. In the late vitellogenic oocyte, exogenous substances, namely, glycogen particles and lipid granular substances appeared in the germinal epithelium passed into the ooplasm through the microvilli of the envelope. Yolk granules and multivesicular bodies were involved in the formation of proteinecious yolk granules in the late vitellogenic oocyte. Vitellogenesis occurrs by endogenous autosynthesis and exogenous heterosynthesis. The auxiliary cells function as nutritive cells in the formation and development of the previtellogenic and early vitellogenic oocytes in their earlr stages. Monthly changes in the gonadosomatic index were closely associated with ovarian developmental phases. The reproductive cycle of this species can be classified into five stages: early active stage (January to March), late active stage (March to April), ripe stage (April to August), partially spawned stage (June to August), and spent/inactive stage (August to December). Spawning occurred from June to August, and the major spawning season was from July to August when the sea water was at high temperature.

  • PDF

The effects of Allomyrina dichotoma larval extract on palmitate-induced insulin resistance in skeletal muscle cells (장수풍뎅이 유충 추출물이 고지방산 처리 골격근세포의 인슐린 저항성에 미치는 영향)

  • Kim, Kyong;Sim, Mi-Seong;Kwak, Min-Kyu;Jang, Se-Eun;Oh, Yoon Sin
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.462-475
    • /
    • 2022
  • Purpose: Allomyrina dichotoma larvae are one of the approved edible insects with nutritional value and various functional and medicinal properties. Previously we have demonstrated that the Allomyrina dichotoma larval extract (ADLE) ameliorates hepatic insulin resistance in high-fat diet (HFD)-induced diabetic mice through the activation of adenosine monophosphate-activated protein kinase (AMPK). This study investigated the effects of ADLE on insulin resistance in the skeletal muscle and explored mechanisms for enhancing the glucose uptake in palmitate (PAL)-treated C2C12 myotubes. Methods: To induce insulin resistance, the differentiated C2C12 myotubes were treated with PAL (0.5 mM) for 24 hours, and then treated with a 0.5 mg/ml concentration of ADLE, and the resultant effects were measured. The expression levels of glucose transporter-4 (GLUT4), AMPK, and the mitochondrial metabolism-related proteins were analyzed by western blotting. The mRNA expression levels of lipogenesis- related genes were determined by quantitative reverse-transcriptase PCR. Results: The exposure of C2C12 myotubes to 0.5 mg/ml of ADLE increased cell viability significantly compared to PAL-treated cells. ADLE upregulated the protein expression of GLUT4 and enhanced glucose uptake in the PAL-treated cells. ADLE increased the phosphorylated AMPK in both the PAL-treated C2C12 myotubes and HFD-treated skeletal muscle. The reduced expression levels of peroxisome-proliferator-activated receptor gamma co-activator-1 alpha (PGC1α) and uncoupling protein 3 (UCP3) due to the PAL and HFD treatment were reversed by the ADLE treatment. The citrate synthase activity was also significantly increased with the PAL and ADLE co-treatment. Moreover, the mRNA and protein expressions of fatty acid synthesis-related factors were reduced in the PAL and HFD-treated muscle cells, and this effect was significantly attenuated by the ADLE treatment. Conclusion: ADLE activates AMPK, which in turn induces mitochondrial metabolism and reduces fatty acid synthesis in C2C12 myotubes. Therefore, ADLE could be useful for preventing or treating insulin resistance of skeletal muscles in diabetes.

Usage- and daily intake-based cytotoxicity study of frequently used natural food additives in South Korea (국내 다빈도 사용 천연첨가물의 사용량 및 섭취량 기반 세포독성 연구)

  • Yu, Jin;Kim, Ye-Hyun;Choi, Soo-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.546-554
    • /
    • 2020
  • Natural food additives have recently attracted attention as alternatives to synthetic additives. However, little information is available regarding their potential toxicity. In this study, we evaluated ten different natural food additives that are widely used in commercial foods in South Korea based on their actual usage level and daily intake. The results showed that none of the tested natural additives exhibited cytotoxicity in terms of inhibition of cell proliferation/viability and lactate dehydrogenase leakage. Additionally, the tested natural food additives did not generate intracellular reactive oxygen species (ROS), whereas they significantly decreased intracellular ROS levels produced by hydrogen peroxide. Moreover, none of the tested natural additives affected cell proliferation and viability in 2D and 3D intestinal epithelium models. Taken together, the ten natural food additives did not exhibit cytotoxicity in their actual usage levels. These findings can be used to further assess the toxicity of natural food additives.

Protective Effects of a Herbal Composition (HemoHIM) Against Apoptosis Induced by Oxidative Stress of Hydrogen Peroxide (과산화수소의 산화적 스트레스로 유도된 Apoptosis에 대한 생약복합조성물(HemoHIM)의 방호효과 평가)

  • Shin, Sung-Hae;Kim, Do-Soon;Kim, Mi-Jung;Kim, Sung-Ho;Jo, Sung-Kee;Byun, Mung-Woo;Yee, Sung-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1127-1132
    • /
    • 2006
  • In our previous study, a novel herb mixture (HIM-I) of Angelica gigas radix, Cnidium officinale rhizoma, and Paeonia japonica radix was developed to protect the intestinal and immune systems and promote its recovery against radiation damage. A new herbal composition (HemoHIM) with the high immune modulating activity was developed from HIM-I. HIM-I was fractionated into ethanol fraction (HIM-I-E) and polysaccharide fraction (HIM-I-P). And HemoHIM was prepared by adding HIM-I-P to HIM-I. HemoHIM showed more effective than HIM-I in immune modulation as well as radioprotection. The present study is designed to investigate the protective effects of HIM-I, HIM-I-P, and HemoHIM on hydrogen peroxide $(H_2O_2)$ induced apoptosis of human promyelocytic leukemia (HL-60) cells. It was shown that $H_2O_2$ treatment reduced the viability of cells, and increased appearance of DNA ladders, hypodiploid (subG1) cells, and phosphatidylserine translocation level. Pretreatment of HemoHIM significantly reduced the cytotoxic effect induced by $H_2O_2$, associated with reducing the translocation of phosphatidylserine, hypodiploid cells and DNA ladders. HemoHIM appeared to be more protective than HIM-I against $H_2O_2$ induced apoptosis whereas, it exhibited similar activity to HIM-I-P. These results indicated that HemoHIM might be an useful agent for protection against oxidative stress $(H_2O_2)-induced$ apoptosis as well as immune modulation, especially since it is a relatively nontoxic natural product.